An Integrated Experimental Study of Foamy Oil Flow During Solution Gas Drive

2005 ◽  
Vol 44 (04) ◽  
Author(s):  
A.N. Ostos ◽  
B.B. Maini
2015 ◽  
Vol 109 (1) ◽  
pp. 25-42 ◽  
Author(s):  
Teng Lu ◽  
Zhaomin Li ◽  
Songyan Li ◽  
Shangqi Liu ◽  
Xingmin Li ◽  
...  

Author(s):  
Yanyu Zhang ◽  
Hao Zhao ◽  
Xiaofei Sun ◽  
Shuo Zhang ◽  
Zhiyong Gai ◽  
...  

2016 ◽  
Vol 19 (04) ◽  
pp. 604-619 ◽  
Author(s):  
Achinta Bera ◽  
Tayfun Babadagli

Summary Foamy-oil flow is encountered not only during the primary stage of the cold-heavy-oil-production (CHOP) process through evolving methane originally in the oil but also in the post-CHOP enhanced-oil-recovery (EOR) applications in which different gases are injected and dissolved in heavy oil. Despite remarkable efforts on the physics of foamy oil flow, the mechanics of its flow through porous media is not properly understood yet. This is mainly because of lack of detailed experimental studies at the core scale to clarify the physics of the process and to support numerical-modeling studies. One also should test foamy-oil flow for different types of EOR gases dissolved and evolved at different conditions under pressure depletion. The objective of the present work is to perform detailed laboratory experiments on foamy-oil flow through porous media. Pressure/volume/temperature (PVT) studies were conducted to determine the actual pressure ranges in the coreflooding experiments in the beginning. After dissolving different gases in dead oil at 400 psi for methane (CH4) and carbon dioxide (CO2) and 112 psi for propane, the oil was injected into a sandpack to saturate it. The solution-gas-drive test was started by opening the outlet valve of the coreholder after reaching equilibrium. To mimic typical post-CHOP EOR conditions with methane, propane, or CO2 injection, the pressure was kept high (400 psi for CO2 and CH4 and 112 psi for propane). The produced oil by solution-gas drive and the gas evolved were monitored by collecting them in a graduated cylinder and a gas cylinder, respectively, while the pressure was recorded by an automatic data-acquisition system. The experimental data provided information about the effect of initial pressure of the depletion test in the amount of oil and gas measured as well as the visual observations of bubble characteristics of the foamy oil. Results showed that, among the three gases, CO2 is a good candidate for foamy oil. Maximum oil recovery [more than 50% of original oil in place (OIP) (OOIP)] was obtained in case of CO2.


SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1236-1253 ◽  
Author(s):  
Tae Wook Kim ◽  
E.. Vittoratos ◽  
A. R. Kovscek

Summary Recovery processes with a voidage-replacement ratio (VRR) (VRR = injected volume/produced volume) of unity rely solely on viscous forces to displace oil, whereas a VRR of zero relies on solution-gas drive. Activating a solution-gas-drive mechanism in combination with waterflooding with periods of VRR less than unity (VRR < 1) may be optimal for recovery. Laboratory evidence suggests that recovery for VRR < 1 is enhanced by emulsion flow and foamy (i.e., bubbly) crude oil at pressures under bubblepoint for some crude oils. This paper investigates the effect of VRR for two crude oils referred to as A1 (88 cp and 6.2 wt% asphaltene) and A2 (600 cp and 2.5 wt% asphaltene) in a sandpack system (18-in. length and 2-in. diameter). The crude oils are characterized with viscosity, asphaltene fraction, and acid/base numbers. A high-pressure experimental sandpack system (1 darcy and Swi = 0) was used to conduct experiments with VRRs of 1.0, 0.7, and 0 for both oils. During waterflood experiments, we controlled and monitored the rate of fluid injection and production to obtain well-characterized VRR. On the basis of the production ratio of fluids, the gas/oil and /water relative permeabilities were estimated under two-phase-flow conditions. For a VRR of zero, the gas relative permeability of both oils exhibited extremely low values (10−6−10−4) caused by internal gas drive. Waterfloods with VRR < 1 displayed encouraging recovery results. In particular, the final oil recovery with VRR = 0.7 [66.2% original oil in place (OOIP)] is more than 15% greater than that with VRR = 1 (55.6% OOIP) with A1 crude oil. Recovery for A2 with VRR = 0.7 (60.5% OOIP) was identical to the sum of oil recovery for solution-gas drive (19.1% OOIP) plus waterflooding (40.1% OOIP). An in-line viewing cell permitted inspection of produced fluid morphology. For A1 and VRR = 0.7, produced oil was emulsified, and gas was dispersed as bubbles, as expected for a foamy oil. For A2 and VRR < 1, foamy oil was not clearly observed in the viewing cell. In all cases, the water cut of VRR = 1 is clearly greater than that of VRR = 0.7. Finally, three-phase relative permeability was explored on the basis of the experimentally determined two-phase oil/water and liquid/gas relative permeability curves. Well-known algorithms for three-phase relative permeability, however, did not result in good history matches to the experimental data. Numerical simulations matched the experimental recovery vs. production time acceptably after modification of the measured krg and krow relationships. A concave shape for oil relative permeability that is suggestive of emulsified oil in situ was noted for both systems. The degree of agreement with experimental data is sensitive to the details of gas (gas/oil system) and oil (oil/water system) mobility.


2009 ◽  
Vol 66 (1-2) ◽  
pp. 69-74 ◽  
Author(s):  
Jian Wang ◽  
Yingzhong Yuan ◽  
Liehui Zhang ◽  
Ruihe Wang

Sign in / Sign up

Export Citation Format

Share Document