Novel Coiled-Tubing Perforation Technique and Stimulation in Carbonate Gas Well

2017 ◽  
Vol 69 (06) ◽  
pp. 65-67
Author(s):  
Chris Carpenter
Keyword(s):  
Gas Well ◽  
2015 ◽  
Author(s):  
A. Ebrahimi ◽  
P. J. Schermer ◽  
W. Jelinek ◽  
D. Pommier ◽  
S. Pfeil ◽  
...  

2011 ◽  
Author(s):  
Victor Gerardo Vallejo ◽  
Aciel Olivares ◽  
Pablo Crespo Hdez ◽  
Eduardo R. Roman ◽  
Claudio Rogerio Tigre Maia ◽  
...  

2021 ◽  
Author(s):  
S. Sherry Zhu ◽  
Marta Antoniv ◽  
Martin Poitzsch ◽  
Nouf Aljabri ◽  
Alberto Marsala

Abstract Manual sampling rock cuttings off the shale shaker for lithology and petrophysical characterization is frequently performed during mud logging. Knowing the depth origin where the cuttings were generated is very important for correlating the cuttings to the petrophysical characterization of the formation. It is a challenge to accurately determine the depth origin of the cuttings, especially in horizontal sections and in coiled tubing drilling, where conventional logging while drilling is not accessible. Additionally, even in less challenging drilling conditions, many factors can contribute to an inaccurate assessment of the depth origin of the cuttings. Inaccuracies can be caused by variation of the annulus dimension used to determine the lag time (and thus the depth of the cuttings), by the shifting or scrambling of cuttings during their return trip back to the surface, and by the mislabelling of the cuttings during sampling. In this work, we report the synthesis and application of polystyrenic nanoparticles (NanoTags) in labeling cuttings for depth origin assessment. We have successfully tagged cuttings using two NanoTags during a drilling field test in a carbonate gas well and demonstrated nanogram detection capability of the tags via pyrolysis-GCMS using an internally developed workflow. The cuttings depth determined using our tags correlates well with the depth calculated by conventional mud logging techniques.


2010 ◽  
Author(s):  
Francisco Garzon ◽  
J. Ricardo Solares ◽  
Jose Ricardo Amorocho ◽  
Abdulmohsin Al-Mulhim ◽  
Wassim Kharrat ◽  
...  

2016 ◽  
Author(s):  
S. G. Kreknin ◽  
K. V. Pushnikov ◽  
M. N. Makarevich ◽  
K. Burdin ◽  
V. Pivovarov ◽  
...  
Keyword(s):  
Gas Well ◽  

2021 ◽  
pp. 75-85
Author(s):  
D. S. Leontiev ◽  
I. I. Kleshchenko ◽  
A. D. Shalyapina ◽  
M. M. Mansurova

In the modern practice of gas field operation, there is a problem associated with the inflow of bottom water to the bottom hole of the well. One of the ways to solve this urgent problem is the introduction of water isolation technologies in the development of gas fields and the use of special compositions and technological equipment for pumping liquids into the watered layers of gas wells. The article deals with the application of a set of special technological measures, such as installation of surface equipment for working in a gas well using coiled tubing, descent of a flexible pipe through a column of pump and compressor pipes with a packer, construction of an inflatable packer, as well as the use of a selective water-insulating composition of the well by pumping it through existing perforation channels in the casing string. Liquids based on ethyl silicate create a kind water shut-off screen between the gas- saturated and water-saturated parts of the gas well formation.


2006 ◽  
Author(s):  
Linus Ayajuru Nwoke ◽  
Chike Valentine Uchendu ◽  
Onyemaechi Onwubiko Ubani ◽  
John Button ◽  
James Ohioma I. Arukhe

Sign in / Sign up

Export Citation Format

Share Document