High Efficiency Fracturing Fluids for High-Temperature, Low-Permeability Reservoirs

Author(s):  
S.A. Baumgartner ◽  
C.D. Parker ◽  
D.A. Williams ◽  
R.A. Woodroof
1983 ◽  
Author(s):  
S.A. Baumgartner ◽  
C.D. Parker ◽  
D.A. Williams ◽  
R.A. Woodroof

2000 ◽  
Author(s):  
Mathew Samuel ◽  
Dan Polson ◽  
Don Graham ◽  
Walt Kordziel ◽  
Tim Waite ◽  
...  

2016 ◽  
pp. 49-57
Author(s):  
V. R. Kalinin

The article considers the advantages and limitations of hydraulic fracturing fluid based on carboxymethyl cellulose determined as a result of laboratory studies. As a result of testing the studied fluid manufacturing features compared with similar fracturing fluids it was determined that the fluid of interest can be effectively used as a fluid for formation hydraulic fracturing especially in low permeability reservoirs. This fluid is widely available and has a low cost. It can easily replace the foreign analogues.


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2017 ◽  
pp. 30-36
Author(s):  
R. V. Urvantsev ◽  
S. E. Cheban

The 21st century witnessed the development of the oil extraction industry in Russia due to the intensifica- tion of its production at the existing traditional fields of Western Siberia, the Volga region and other oil-extracting regions, and due discovering new oil and gas provinces. At that time the path to the development of fields in Eastern Siberia was already paved. The large-scale discoveries of a number of fields made here in the 70s-80s of the 20th century are only being developed now. The process of development itself is rather slow in view of a number of reasons. Create a problem of high cost value of oil extraction in the region. One of the major tasks is obtaining the maximum oil recovery factor while reducing the development costs. The carbonate layer lying within the Katangsky suite is low-permeability, and its inventories are categorised as hard to recover. Now, the object is at a stage of trial development,which foregrounds researches on selecting the effective methods of oil extraction.


Sign in / Sign up

Export Citation Format

Share Document