Organosilicon Drilling Fluid System for HT Deep Gas Wells

Author(s):  
Yuxue Sun ◽  
Yanfen Zhang ◽  
Jingyuan Zhao
2001 ◽  
Author(s):  
Xu Shaocheng ◽  
Xiaojian Jin ◽  
Li Zili ◽  
Xinjing Xiang
Keyword(s):  

2021 ◽  
Author(s):  
Zhao Xionghu ◽  
Saviour Bassey Egwu ◽  
Deng Jingen ◽  
Miao Liujie

Abstract The effect of corrosion inhibitor Benzotriazole on synthetic-based mud system was studied. Rheological performance of the benzotriazole enhanced synthetic-based fluid system was studied and compared against the base mud. To study its effect on dynamic wellbore conditions, different drilling fluid compositions were placed in a hot rolling oven for 16 hours at temperatures 150 °C and 170°C and the effect of temperature on mud properties were studied. Tests carried out include rheological test (before and after hot rolling), filtrate pH, lubricity test, and fluid loss test. The corrosion penetration rate was studied using the weight loss method. Based on experiment results, the synthetic-based mud system which comprised of benzotriazole displayed a reduction in coefficient of friction up to 95.93%. At ambient condition, optimal ratio of mineral oil:benzotriazole (M:B) which gives best lubricity performance on synthetic-based mud system is 80:20. This leads to improved corrosion inhibition and lubricity of the synthetic-based fluid by reducing the coefficient of friction up to 90.13%. Increased temperature led to further decrease in coefficient of friction with a % torque reduction of 95.93 displayed by the 80:20 ratio M:B mud composition at 170 °C. Significant alterations of the mud composition rheological and fluid loss parameters before and after exposure to high temperature in hot rolling oven were not observed. pH values were maintained ≥7 at the dynamic conditions highlighting solubility of the formulated fluid composition and absence of contaminants which can pose significant threats to the rates of corrosion in drill pipes. Increasing the concentration of Benzotriazole led to a reduction in corrosion rate. However, as the temperature effect increased, the corrosion rate elevated. Based on results from this investigation, it was concluded that Benzotriazole can be applied as a corrosion inhibitor in a synthetic-based drilling fluid system as an alternative corrosion inhibitor without significant alteration of the base mud properties. Benefits of this will be the optimization of extended reach well drilling operations due to excellent lubricity performance, corrosion rate reduction, compatibility with HPHT wellbore condition and fluid loss control.


1987 ◽  
Author(s):  
J.A. Wingrave ◽  
E. Kubena ◽  
C.F. Douty ◽  
D.L. Whitfill ◽  
D.P. Cords

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mohamed Mahmoud

The well clean-up process involves the removal of impermeable filter cake from the formation face. This process is essential to allow the formation fluids to flow from the reservoir to the wellbore. Different types of drilling fluids such as oil- and water-based drilling fluids are used to drill oil and gas wells. These drilling fluids are weighted with different weighting materials such as bentonite, calcium carbonate, and barite. The filter cake that forms on the formation face consists mainly of the drilling fluid weighting materials (around 90%), and the rest is other additives such as polymers or oil in the case of oil-base drilling fluids. The process of filter cake removal is very complicated because it involves more than one stage due to the compatibility issues of the fluids used to remove the filter cake. Different formulations were used to remove different types of filter cake, but the problem with these methods is the removal efficiency or the compatibility. In this paper, a new method was developed to remove different types of filter cakes and to clean-up oil and gas wells after drilling operations. Thermochemical fluids that consist of two inert salts when mixed together will generate very high pressure and high temperature in addition to hot water and hot nitrogen. These fluids are sodium nitrate and ammonium chloride. The filter cake was formed using barite and calcite water- and oil-based drilling fluids at high pressure and high temperature. The removal process started by injecting 500 ml of the two salts and left for different time periods from 6 to 24 h. The results of this study showed that the newly developed method of thermochemical removed the filter cake after 6 h with a removal efficiency of 89 wt% for the barite filter cake in the water-based drilling fluid. The mechanisms of removal using the combined solution of thermochemical fluid and ethylenediamine tetra-acetic acid (EDTA) chelating agent were explained by the generation of a strong pressure pulse that disturbed the filter cake and the generation of the high temperature that enhanced the barite dissolution and polymer degradation. This solution for filter cake removal works for reservoir temperatures greater than 100 °C.


2018 ◽  
Vol 45 (3) ◽  
pp. 529-535 ◽  
Author(s):  
Xiaojun WANG ◽  
Jing YU ◽  
Yunchao SUN ◽  
Chao YANG ◽  
Lizhou JIANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document