coefficient of friction
Recently Published Documents


TOTAL DOCUMENTS

1884
(FIVE YEARS 463)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Francis Olivier DJIOGANG ◽  
Francis Olivier Djiogang ◽  
Fidèle Koumetio ◽  
David Yemele ◽  
Guillaume L Ymeli ◽  
...  

2022 ◽  
Vol 2159 (1) ◽  
pp. 012014
Author(s):  
P A Garzón-Agudelo ◽  
W Palacios-Alvarado ◽  
B Medina-Delgado

Abstract The 316 L steel is a type of stainless steel widely used in the medical industry, which in recent years has been studied for different uses in society. Being an engineering material, it is imperative to know its performance based on its physical and mechanical properties that allow identifying the response of this steel in addition to thin films as coatings. Bismuth and titanium have been recently used to improve the properties of 316 L steel, so they were used in this study. The sol-gel technique was used as the film forming method. The response of physical and mechanical properties was evaluated from the analysis of microhardness and coefficient of friction reported for the different types of steel-coating systems. Higher microhardness values were found for films with higher proportion of titanium. The coefficient of friction values is influenced by the system used, with higher values obtained for samples with a single coating layer.


2022 ◽  
Vol 8 (1) ◽  
pp. 45-59
Author(s):  
Almoutaz Bellah Alsamawi ◽  
Nadir Boumechra ◽  
Karim Hamdaoui

This paper investigates the cyclic behaviour of steel-concrete encased composite columns. By investigating the cover concrete and the steel-concrete coefficient of friction on the behaviour (strength, ductility, stiffness, and energy dissipation) of composite columns subjected to combined axial load and cyclically increasing lateral load to improve the strength and performance of the composite column. Eight of the columns were designed to study the cover concrete effect, and eleven other columns were designed to study the coefficient of friction effect in the dynamic behaviour to the cyclic load. Additionally, in this study, the finite element models created in ANSYS software were verified and calibrated against previously published experimental results (load-displacement curve, load capacity and failure mode). The numerical results obtained from the finite element model indicate that the ductility and the energy dissipated increased by +11.71 and +18.93% receptively by the increase of the cover concrete until reaching the limit of the cover concrete. Beyond this limit, the ductility and the energy decrease by 27.33 and 24.97% receptively. The results also indicate that the ductility and the energy dissipated increased by 12.62 and 7.82% receptively by the increased coefficient of friction until reach 0.6, after that the energy decreases by 4.47%. Doi: 10.28991/CEJ-2022-08-01-04 Full Text: PDF


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 20
Author(s):  
Song Hu ◽  
Ge Shi ◽  
Qinggang Guo ◽  
Long Zheng ◽  
Luquan Ren ◽  
...  

The ventral scales of Dinodon rufozonatum were investigated to understand the outstanding tribological adaptability in various environments. The coefficient of friction (COF) of ventral scales was measured and changed with the contact conditions. It was discovered that the COF of scales under water-lubrication conditions (WLC) was larger than that under dry conditions (DC). More interestingly, the COF increased first and then decreased as the substrate roughness reduced. The abrasion marks on scales were then observed. The results indicated that the scales in DC wore more gently than that in WLC. Moreover, the degree of wear reduced with the decrease of substrate roughness. The frictional performance of ventral scales enabled the snakes to move more efficiently, quickly, and flexibly in multiple environments.


2021 ◽  
Vol 13 (2) ◽  
pp. 63-75
Author(s):  
Anupama Francy Kothasiri ◽  
◽  
Srinivasa Rao Chalamalasetti ◽  
Gopalakrishnaiah Peteti ◽  
◽  
...  

Extrusion is a simple metal forming process in which a block of metal is forced through a die orifice with a certain shape under high pressure. This extrusion process is influenced by many process parameters such as die angle (DA), ram speed (RS), coefficient of friction (COF), Extrusion ratio, Die land height, work piece diameter and length, material properties etc. In extrusion process, extrusion force is crucial parameter, the flow of metal and hence the extrusion force is significantly influenced by the above parameters which results in quality of the product. The present study numerically investigates the influence of major process parameters such as die angle, ram speed, coefficient of friction on the extrusion process. The AA2024 material is chosen as work piece material and the extrusion force and damage is considered as the output responses. The input process parameters are varied in three levels (Level - 1: 10° DA, 1.6mm/min RS, 0.06 COF; Level - 2: 20° DA, 3.2mm/min RS, 0.08 COF; Level - 3: 30° DA, 4.8mm/min RS, 0.01 COF). Numerical simulations are performed by using DEFORM 3D software. The simulations are conducted as per L27 orthogonal array. From the results it is observed that Increase of die angle, ram speed and coefficient of friction increases the extrusion force. The die angle has highest (86.45%) influence on the extrusion force, then after ram speed (6.60%). The coefficient of friction has insignificant influence (0.55%). It is also noticed that the damage is considerable after the 20° die angle. A multi parameter optimization is also done by using the Grey relation analysis by considering the equal weightage of extrusion force and damage. The optimum levels of input process parameters for the minimum extrusion force and damage is DA level 1, RS level 1, and COF level 3.


Lubricants ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 124
Author(s):  
Anastasios Zavos

This paper presents the impact of coating topography in piston ring-liner conjunction under mixed regime of lubrication using low viscosity oils. The study provides a time efficient analytical model including mixed-hydrodynamics regime of lubrication under different contact conditions. The method modified the expressions of the contact load and area of Greenwood-Tripp model in order to capture the real asperities interaction into contact. The model represents the tribological behavior of a thin top ring at Top Dead Centre, where boundary and mixed conditions are predominant. Electroplated CrN and PVD TiN coated rings were studied to predict the ring friction. The results are compared with an uncoated steel ring. The CrN coating shows slighter coefficient of friction, due to the coating morphology and roughness parameters. The TiN coating presents thicker lubricant films and higher coefficient of friction because the surface topography is quite rough with high peaks. This can be explained because of the major contribution of the roughness parameter and asperity slope in the boundary friction prediction.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
Sachin Solanke ◽  
Vivek Gaval

In this research ball on disc wear tests have been carried out with ASTM G-99 standard at room temperature in simulated body fluid. The tribological property such as the coefficient of friction and wear weight loss was studied by using the Taguchi design of experiments. The design of the experiment was done using L8 orthogonal array to determine the collective contribution of the wear parameters. An analysis of variance demonstrated that the individual contribution of type of material factor was 97.15% and 66.66% for the coefficient of friction and wear weight loss respectively, which is the highest individual contribution as compared to other factors. It was concluded that the coefficient of friction and wear weight loss is mainly influenced by type of material factor. The analysis of the signal-to-noise ratio shows that the optimal coefficient of friction and wear weight loss was obtained with CoCrMo material at an applied normal load of 5 N with a sliding velocity of 0.05 m/s for a track diameter of 30 mm. To check the accuracy of results a confirmation test was carried out which indicates that predicted values are very close to the experimental values and the model is significant to predict the coefficient of friction. The results showed that the coefficient of friction and wear weight loss increases with increasing the applied load and sliding velocity. The microstructure of all substrates materials was analyzed using a scanning electron microscope. Wear track study showed that adhesive dominant wear mechanism for all four different substrate materials.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4295
Author(s):  
Hai Wang ◽  
Annan Sun ◽  
Xiaowen Qi ◽  
Yu Dong ◽  
Bingli Fan

The tribological properties of polytetrafluoroethylene (PTFE)/AP (poly(para-phenyleneterephthalamide) (PPTA) pulp) composites under different test conditions (load: 2N, 10N; frequency: 1 Hz, 4 Hz; amplitude: 2 mm, 8 mm) were holistically evaluated. PTFE/AP composites with different AP mass ratios of 3%, 6%, and 12% as a skeleton support material were prepared. The coefficient of friction (COF) and wear rate were determined on a ball-on-disk tribometer. Furthermore, the morphology, element composition, and chemical structure of the transfer membrane were analyzed accordingly. The relationships between load, frequency, amplitude, and tribological properties were further investigated. According to the wear mechanism, AP enables effective improvement in the stiffness and wear resistance, which is also conducive to the formation of transfer films.


Author(s):  
Yap Jun Heng ◽  
Nurul Farhana Mohd Yusof ◽  
Lee Ann Yen ◽  
Shazlina Abd Hamid ◽  
Nurul Nadzirah Mohd Yusof

Grease lubricants are widely used in rolling contact applications to reduce friction between two rolling surfaces. Improper lubrication may cause high contact stress and deformation to the bearings and lead to machine failure The purpose of this study is to investigate the coefficient of friction produced by newly developed palm oil-based grease and to investigate the contact characteristics in lubricated roller bearings. In this work, the coefficient of friction of new greases was evaluated experimentally and the values were compared with the conventional mineral oil-based grease to investigate the friction performance. The friction test was performed using a four-ball tester. The finite element model was developed based on the roller bearing geometry and the simulation was carried out the evaluate the contact characteristic. The experimental result shows that the palm oil grease formulation A had the least coefficient of friction, followed by palm oil grease formulation B, mineral grease and food grade grease. This indicates that palm oil-based grease has the potential to be applied in rolling contact applications due to low friction characteristics. Finite element analysis shows that the maximum von Mises stress and total deformation for frictional contact are higher than the frictionless contact. For the frictional contact analysis with various lubricant COF, similar values were obtained with von Mises stress at 400.69 MPa and 3.4033×10-4 mm deformation. The finding shows that the small difference in grease COF did not affect the rolling contact. The finding also shows that the newly developed biodegradable grease has a similar performance in terms of rolling contact friction and contact characteristic in a condition that the bearing is operating in normal condition.


Sign in / Sign up

Export Citation Format

Share Document