Feasibility of Monitoring Gas-Hydrate Production With Time-Lapse Vertical Seismic Profiling

SPE Journal ◽  
2010 ◽  
Vol 15 (03) ◽  
pp. 634-645 ◽  
Author(s):  
Michael B. Kowalsky ◽  
Seiji Nakagawa ◽  
George J. Moridis

Summary Many studies involving the application of geophysical methods in the field of gas hydrates have focused on determining rock-physics relationships for hydrate-bearing sediments, with the goal being to delineate the boundaries of gas-hydrate accumulations and to estimate the quantities of gas hydrate that such accumulations contain using remote-sensing techniques. However, the potential for using time-lapse geophysical methods to monitor the evolution of hydrate accumulations during production and, thus, to manage production has not been investigated. In this work, we begin to examine the feasibility of using time-lapse seismic methods—specifically, the vertical-seismic-profiling (VSP) method—for monitoring changes in hydrate accumulations that are predicted to occur during production of natural gas. A feasibility study of this nature is made possible through the coupled simulation of large-scale production in hydrate accumulations and time-lapse geophysical (seismic) surveys. We consider a hydrate accumulation in the Gulf of Mexico that may represent a promising target for production. Although the current study focuses on one seismic method (VSP), this approach can be extended easily to other geophysical methods, including other seismic methods (e.g., surface seismic or crosshole measurements) and electromagnetic surveys. In addition to examining the sensitivity of seismic attributes and parameters to the changing conditions in hydrate accumulations, our long-term goals in this work are to determine optimal sampling strategies (e.g., source frequency, time interval for data acquisition) and measurement configurations (e.g., source and receiver spacing for VSP), while taking into account uncertainties in rock-physics relationships. The numerical-modeling strategy demonstrated in this study may be used in the future to help design cost-effective geophysical surveys to track the evolution of hydrate properties. Here, we describe the modeling procedure and present some preliminary results.

2005 ◽  
Vol 42 (4) ◽  
pp. 1105-1115 ◽  
Author(s):  
O Meric ◽  
S Garambois ◽  
D Jongmans ◽  
M Wathelet ◽  
J L Chatelain ◽  
...  

Several geophysical techniques (electromagnetic profiling, electrical tomography, seismic refraction tomography, and spontaneous potential and seismic noise measurement) were applied in the investigation of the large gravitational mass movement of Séchilienne. France. The aim of this study was to test the ability of these methods to characterize and delineate the rock mass affected by this complex movement in mica schists, whose lateral and vertical limits are still uncertain. A major observation of this study is that all the zones strongly deformed (previously and at present) by the movement are characterized by high electrical resistivity values (>3 kΩ·m), in contrast to the undisturbed mass, which exhibits resistivity values between a few hundred and 1 kΩ·m. As shown by the surface observations and the seismic results, this resistivity increase is due to a high degree of fracturing associated with the creation of air-filled voids inside the mass. Other geophysical techniques were tested along a horizontal transect through the movement, and an outstanding coherency appeared between the geophysical anomalies and the displacement rate curve. These preliminary results illustrate the benefits of combined geophysical techniques for characterizing the rock mass involved in the movement. Results also suggest that monitoring the evolution of the rock mass movement with time-lapse geophysical surveys could be beneficial.Key words: gravitational movement, geophysical methods, Séchilienne.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tomasz Maćkowski ◽  
Anna Sowiżdżał ◽  
Anna Wachowicz-Pyzik

The geothermal waters constitute a specific type of water resources, very important from the point of view of their thermal energy potential. This potential, when utilized, supplies an ecological and renewable energy, which, after effective development, brings many environmental, social, and industrial benefits. The key element of any geothermal investment is the proper location of geothermal installation, which would guarantee the relevant hydrogeothermal parameters of the water intake. Hence, many studies and analyses are carried out in order to characterize the reservoir parameters, including the integrated geophysical methods. For decades, the geophysical surveys have been the trusty recognition methods of geological structure and petrophysical parameters of rock formations. Thus, they are widely applied by petroleum industry in exploration of conventional and unconventional (shale gas/oil, tight gas) hydrocarbon deposits. Advances in geophysical methods extended their applicability to many other scientific and industrial branches as, e.g., the seismic survey used in studies of geothermal aquifers. The following paper presents the opportunities provided by seismic methods applied to studies of geothermal resources in the central Poland where the geothermal waters are reservoired in both the Lower Cretaceous and the Lower Jurassic sedimentary successions. The presented results are obtained from a network of seismic profiles. An important advantage of the seismic survey is that they may support the selection of an optimal location of geothermal investment and determination of the geometry of geothermal aquifer. Furthermore, the application of geophysical methods can significantly contribute to the reduction of estimation error of groundwater reservoir temperature.


2021 ◽  
Vol 40 (6) ◽  
pp. 434-441
Author(s):  
Don White ◽  
Thomas M. Daley ◽  
Björn Paulsson ◽  
William Harbert

Borehole geophysical methods are a key component of subsurface monitoring of geologic CO2 storage sites because boreholes form a locus where geophysical measurements can be compared directly with the controlling geology. Borehole seismic methods, including intrawell, crosswell, and surface-to-borehole acquisition, are useful for site characterization, surface seismic calibration, 2D/3D time-lapse imaging, and microseismic monitoring. Here, we review the most common applications of borehole seismic methods in the context of storage monitoring and consider the role that detailed geophysical simulations can play in answering questions that arise when designing monitoring plans. Case study examples are included from the multitude of CO2 monitoring projects that have demonstrated the utility of borehole seismic methods for this purpose over the last 20 years.


2016 ◽  
Vol 64 (4) ◽  
pp. 987-1000 ◽  
Author(s):  
Mohammed Al Hosni ◽  
Eva Caspari ◽  
Roman Pevzner ◽  
Thomas M. Daley ◽  
Boris Gurevich

Sign in / Sign up

Export Citation Format

Share Document