Bayesian Optimization Algorithm Applied to Uncertainty Quantification

SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 865-873 ◽  
Author(s):  
Asaad Abdollahzadeh ◽  
Alan Reynolds ◽  
Mike Christie ◽  
David Corne ◽  
Brian Davies ◽  
...  

Summary Prudent decision making in subsurface assets requires reservoir uncertainty quantification. In a typical uncertainty-quantification study, reservoir models must be updated using the observed response from the reservoir by a process known as history matching. This involves solving an inverse problem, finding reservoir models that produce, under simulation, a similar response to that of the real reservoir. However, this requires multiple expensive multiphase-flow simulations. Thus, uncertainty-quantification studies employ optimization techniques to find acceptable models to be used in prediction. Different optimization algorithms and search strategies are presented in the literature, but they are generally unsatisfactory because of slow convergence to the optimal regions of the global search space, and, more importantly, failure in finding multiple acceptable reservoir models. In this context, a new approach is offered by estimation-of-distribution algorithms (EDAs). EDAs are population-based algorithms that use models to estimate the probability distribution of promising solutions and then generate new candidate solutions. This paper explores the application of EDAs, including univariate and multivariate models. We discuss two histogram-based univariate models and one multivariate model, the Bayesian optimization algorithm (BOA), which employs Bayesian networks for modeling. By considering possible interactions between variables and exploiting explicitly stored knowledge of such interactions, EDAs can accelerate the search process while preserving search diversity. Unlike most existing approaches applied to uncertainty quantification, the Bayesian network allows the BOA to build solutions using flexible rules learned from the models obtained, rather than fixed rules, leading to better solutions and improved convergence. The BOA is naturally suited to finding good solutions in complex high-dimensional spaces, such as those typical in reservoir-uncertainty quantification. We demonstrate the effectiveness of EDA by applying the well-known synthetic PUNQ-S3 case with multiple wells. This allows us to verify the methodology in a well-controlled case. Results show better estimation of uncertainty when compared with some other traditional population-based algorithms.

2011 ◽  
Author(s):  
Asaad Abdollahzadeh ◽  
Alan Reynolds ◽  
Michael A. Christie ◽  
David Corne ◽  
Brian James Davies ◽  
...  

2021 ◽  
Vol 231 ◽  
pp. 111453
Author(s):  
Qianjin Lin ◽  
Chun Zou ◽  
Shibo Liu ◽  
Yunpeng Wang ◽  
Lixin Lu ◽  
...  

Kerntechnik ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. 109-121 ◽  
Author(s):  
B. Zhang ◽  
M. Peng ◽  
S. Cheng ◽  
L. Sun

Abstract Small modular reactors (SMRs) are suitable for deployment in isolated underdeveloped areas to support highly localized microgrids. In order to achieve almost autonomous operation for reducing the cost of operating personnel, an autonomous control system with decision-making capability is needed. In this paper, a decision-making method based on Bayesian optimization algorithm (BOA) is proposed to explore the optimal operation scheme under fault conditions. BOA is used to adjust exploration strategy of operation scheme according to observations (operation schemes previously explored). To measure the feasibility of each operation scheme, an objective function that considers security and economy is established. BOA attempts to obtain the optimal operation scheme with maximum of the objective function in as few iterations as possible. To verify the proposed method, all main pump powered off fault is simulated by RELAP5 code. The optimal operation scheme of the fault is applied, the transient result shows that all key parameters are within safe limits and SMR is maintained at relatively high power, which means that BOA has the decision-making capability to get an optimal operation scheme on fault conditions.


Author(s):  
Laurens Bliek ◽  
Sicco Verwer ◽  
Mathijs de Weerdt

Abstract When a black-box optimization objective can only be evaluated with costly or noisy measurements, most standard optimization algorithms are unsuited to find the optimal solution. Specialized algorithms that deal with exactly this situation make use of surrogate models. These models are usually continuous and smooth, which is beneficial for continuous optimization problems, but not necessarily for combinatorial problems. However, by choosing the basis functions of the surrogate model in a certain way, we show that it can be guaranteed that the optimal solution of the surrogate model is integer. This approach outperforms random search, simulated annealing and a Bayesian optimization algorithm on the problem of finding robust routes for a noise-perturbed traveling salesman benchmark problem, with similar performance as another Bayesian optimization algorithm, and outperforms all compared algorithms on a convex binary optimization problem with a large number of variables.


Sign in / Sign up

Export Citation Format

Share Document