Successful Case Histories of Smart Multilateral Well with Inflow Control Device and Inflow Control Valve for Life-cycle Proactive Reservoir Management in High Mobility Reservoir, Minagish Field West Kuwait

Author(s):  
Khalaf Al-Enezi ◽  
Om Prakash Das ◽  
Muhammad Aslam ◽  
Khalid Ziyab ◽  
Steven R. Fipke
Author(s):  
Рустэм Адипович Исмаков ◽  
Екатерина Всеволодовна Денисова ◽  
Марина Алексеевна Черникова ◽  
Сергей Павлович Сидоров

Актуальность исследования состоит в том, что решением преждевременного прорыва воды или газа в горизонтальной скважине из-за неоднородности профилей притока вдоль оси горизонтального ствола, является изменение пластового давления на различных участках, а также при разработке контактных месторождений, особенно по мере истощения залежи, могут служить устройства контроля притока флюида. Различают активные Interval Control Valve (ICV) или пассивные Inflow Control Device (ICD) устройства. Устройства ICD способны выровнять приток вдоль горизонтальной скважины за счет создания дополнительного сопротивления потоку жидкости, зависящего от величины притока на данном горизонтальном участке. Недостаток современных ICD в том, что они не имеют возможности регулирования и приведения пассивных устройств в действие после установки в стволе скважины. В связи с тем, что имеются риски связанные с неопределенностью в описании свойств пласта, которые присутствуют на всех стадиях разработки месторождения недостаток ICD оказывается существенным. Системы ICV приводятся в действие дистанционно с поверхности скважины, но не способны определять характер поступающего флюида (нефть, газ, вода) в скважину и принимать решение в автоматическом режиме. Цель: разработка новой конструктивной схемы устройства контроля притоком с возможностью непрерывного мониторинга характера поступающей жидкости, и программного обеспечения для управления клапаном с устья скважины. Объекты: горизонтальная скважина и устройство контроля притоком флюида. Методы: имитационное моделирование Simulink, нейронные сети, матричные методы, методы линеаризации нелинейных уравнений. Результаты. Предложена новая конструктивная схема устройства контроля притока в горизонтальной скважине, позволяющая непрерывно оценивать характер поступающего флюида. Данная конструкция позволяет в автоматическом режиме регулировать положение исполнительного механизма по данным измерительных приборов. Дано математическое описание работы клапана. Разработана модель клапана в среде моделирования Simulink, с использованием матричного подхода и нейронных сетей, для построения качественной зависимости положения клапана от значения создаваемого перепада давления. Приведены результаты работы блока нейронной сети и конечный результат моделирования.


2008 ◽  
Author(s):  
Saif Ali Al Arfi ◽  
Ashraf Al-Saiid Keshka ◽  
Salem El-Abd Salem ◽  
Salem Al-Bakr ◽  
Abdulhameed A. Al-Amiri ◽  
...  

2008 ◽  
Author(s):  
Saif Al Arfi ◽  
Ashraf Keshka ◽  
Salem El-Abd Salem ◽  
Salem Al-Bakr ◽  
Abdulhameed Al-Amiri ◽  
...  

2009 ◽  
Author(s):  
Saif Ali Al Arfi ◽  
Omar Y. Mohamed ◽  
Ashraf Al-Saiid Keshka ◽  
Salem El-Abd Salem ◽  
Salem Al-Bakr ◽  
...  

2021 ◽  
Author(s):  
Ali Issa Abdelkerim ◽  
Samir Bellah ◽  
Ahmed Ziad ◽  
Kei Yamamoto

Abstract This paper provides the learnings from a successful application of a smart completion in a complex heterogeneous carbonate reservoir. It details the study, planning, coordination, and implementation process of two pilot wells by a multidisciplinary team, and pilot production performance results, illustrating the success. First, to select an optimum completion design for the field, multi-segment well option and local grid refinement option were applied to the reservoir simulation model including calibration of faults/fractures. Second, based on the modified model, sensitivity analysis was conducted; 1) by selecting different types of completion including Open-hole, blank pipes (BP), compartmentalized slotted liners (SL), inflow control device (ICD) and hydraulic flow control valve (FCV); 2) by optimizing the number of compartments (packer and blank pipe placements for all cases), and ICD / FCV numbers and nozzle sizes. Using the data from the modeled cases, economic analysis was conducted, which indicated that the ICD in conjunction with sliding sleeves (SSD) was the best option. Two candidate wells were selected to cover the variation of reservoir characteristics: one well representing the heterogeneous part of the reservoir with high-density of faults, fractures and kurst, and another one representing the relatively homogenous part of the reservoir suffering from heel to toe effect. A multidisciplinary implementation team was set up to align all stakeholders on subsurface requirements, following up the completion design, coordinating material procurement and logistics for mobilizations, daily drilling operations follow-up, real-time logging data interpretations and completion design adjustment. Evaluation of the two pilots’ results based on predefined KPIs during the study, exceeded overall expectations.


2021 ◽  
Author(s):  
Tejas Kalyani ◽  
Haavard Aakre ◽  
Vidar Mathiesen

Abstract Many wells across the globe have been installed with Inflow Control Device (ICD) technology to balance the production across the production interval, addressing some of the challenges associated with horizontal and deviated wells. Nevertheless, ICDs have limitations with restricting unwanted fluids upon breakthrough. Autonomous Inflow Control Valve (AICV) technology functions similar to an ICD initially (i.e., balancing flux across the length of horizontal wells, effectively delaying breakthrough) but provides the additional benefit of shutting off the flow of unwanted fluids upon breakthrough. This paper will present comprehensive AICV completion design workflow along with multiple case histories highlighting the reservoir management benefits of the AICV technology in mitigating un-wanted inflow of water and gas and delivering improved oil production and recovery. Like other AICDs (Autonomous Inflow Control Device), AICV can differentiate the fluid flowing through it via fluid properties such as viscosity and density at reservoir conditions. However, AICV's performance is much more effective due to its advanced design which provides further benefits using both Hagen-Poiseuille's and Bernoulli's principles. AICV technology is based on the difference in the pressure drop in a laminar flow element (LFE) compared to a turbulent flow element (TFE) and has a capability to shut-off the main flow autonomously when an unwanted fluid such as water or gas breakthrough occurs. Thus, reduces well water cut (WC) and/or gas-oil ratio (GOR) significantly. Rigorous single-phase and multiphase flow-loop tests have been conducted covering a wide range of fluid properties to characterize the AICVs flow performance. Extensive plugging testing and accelerated erosion tests have also been conducted. This paper presents some of these flow performance analysis and testing results. Furthermore, the paper will also discuss in detail a reservoir-centric AICV completion modelling and design workflow. Finally, this papers also discuss in detail AICV well performance installed in a light oil as well as in heavy oil reservoirs and how operators achieved higher OPEX saving as well as higher ultimate recovery (UR) from the wells due to prolonged as well as significant reduction in water cut and/or lower GOR. The AICV design methodology and performance evaluation analysis is presented through several case studies. The analysis takes into account the whole cycle: from flow loop testing to characterization, reservoir modelling, optimized AICV completion design and post-installation well performance to evaluate the AICV technology benefits.


Author(s):  
S.A. Al Arfi ◽  
S. El Abd Salem ◽  
A. Al-Saiid Keshka ◽  
S. Al-Bakr ◽  
A.H. Amiri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document