Study on Permeability Anisotropy in Carbonate Reservoir Samples Using Digital Rock Physics

Author(s):  
Huafeng Sun ◽  
Sandra Vega ◽  
Guo Tao
2012 ◽  
Author(s):  
Muhammad Antonia Gibrata ◽  
Mohammed Ramadan Ayoub ◽  
Zubair Kalam ◽  
Omar Yahya Al-amrie ◽  
Olivier Lopez

Author(s):  
Irsyad Nuruzzaman Sidiq ◽  
Thaqibul Fikri Niyartama

Indonesia is an archipelago country so rich with coral reefs that are a major component of the carbonate rock constituents. Where as much as 40% of carbonate rocks in Indonesia is a hydrocarbon reservoir is still rarely done exploration. This is because conventional hydrocarbon exploration technology has not been able to provide detailed information about the physical quantities. Hydrocarbon exploration technologies currently leads on digital technology to know the physical quantities of a reservoir of more detail such as porosity. Porosity which is physical quantities related to the presence of hydrocarbons in the pores of rocks. Digital Rock Physics (DRP) is a digital image-based method as an alternative method to find the physical quantities of rock samples to make it more effective and efficient. This study aims to identify the physical quantity using the method of porosity of the DRP until obtaining porosity of rock core carbonate reservoir by analyzing the binary image of the two rock cores from the same reservoir but has different dimensions to find out the exact core rocks to analyze the value of porosity. Binary image obtained from a scanned image of a projection of rock that has been reconstructed to become the greyscale image and have gone through the process of thresholding. The results of this study showed that the method can identify the physical quantities of DRP porosity and non-damaging rock pore structure (non-destructive). Analysis of the porosity of the rock core with histogram variations performed (by adjustingting the histogram), using the otsu method of thresholding and pixel size of the image has high (5.343750 μm) used to analyze the value of porosity. The porosity values acquired for 18.040 and has precision 96.20%.


2019 ◽  
Vol 11 (1) ◽  
pp. 617-626
Author(s):  
Xin Nie ◽  
Chi Zhang ◽  
Chenchen Wang ◽  
Shichang Nie ◽  
Jie Zhang ◽  
...  

Abstract As an essential carbonate reservoir parameter, porosity is closely related to rock properties. Digital rock physics (DRP) technology can help us to build forward models and find out the relationship between porosity and physical properties. In order to prepare models for the rock physical simulations of carbonate rocks, digital rock models with different porosities and fractures are needed. Based on a three-dimensional carbonate digital rock image obtained by X-ray microtomography (μ-CT), we used erosion and dilation in mathematical morphology to modify the pores, and fractional Brownian motion model (FBM) to create fractures with different width and angles. The pores become larger after the erosion operation and become smaller after the dilation operation. Therefore, a series of models with different porosities are obtained. From the analysis of the rock models, we found out that the erosion operation is similar to the corrosion process in carbonate rocks. The dilation operation can be used to restore the matrix of the late stages. In both processes, the pore numbers decrease because of the pore surface area decreases. The porosity-permeability relation of the models is a power exponential function similar to the experimental results. The structuring element B’s radius can affect the operation results. The FBM fracturing method has been proved reliable in sandstones, and because it is based on mathematics, the usage of it can also be workable in carbonate rocks. We can also use the processes and workflows introduced in this paper in carbonate digital rocks reconstructed in other ways. The models we built in this research lay the foundation of the next step physical simulations.


Sign in / Sign up

Export Citation Format

Share Document