Solvent-Selection Criteria Based on Diffusion Rate and Mixing Quality for Steam/Solvent Applications in Heavy-Oil and Bitumen Recovery

2016 ◽  
Vol 19 (04) ◽  
pp. 620-632 ◽  
Author(s):  
A.. Marciales ◽  
T.. Babadagli

Summary Heavy-oil and bitumen recovery requires high recovery factors to offset the extreme high cost of investments and operations. Attention has been given to solvent injection for this purpose, and it has been observed that high recoveries are achievable when it is combined with steam injection. Heavier (“liquid”) solvents (liquid at ambient conditions) are especially becoming more popular because of availability and transportation. High oil prices will allow the application of this kind of technique if a proper design is made to retrieve the injected solvent efficiently. “Liquid” solvents are advantageous because they yield a better-quality mixing (especially with very heavy oils and bitumen) but a lower diffusion rate than lighter solvents such as propane or butane. Despite this understanding, there still is not a clear screening criterion for solvent selection to mitigate both diffusion rate and the quality of the mixture. In this study, two main solvent-selection-criteria parameters—diffusion rate and mixing quality—were considered to evaluate solvent-injection efficiency at different temperatures. An optical method under static conditions and image-processing techniques were proposed to determine 1D diffusivity of liquid solvent into a wide range of oil samples in a capillary tube. This sampling range varies from 40-cp oil to 250-cp oil, for which digital-image treatment was developed. X-ray computerized tomography (CT) was applied for heavier (and darker) oils (viscosity range of 20,000 cp to 400,000 cp). The diffusion coefficients were then computed through nonlinear curve fitting on the basis of an optimization algorithm to ensure that the obtained values were in agreement with available analytical solutions. Next, viscosity measurements and asphaltene precipitation for the same heavy-oil/solvent mixtures were performed to determine the mixing quality. The ideal solvent types for different oil types were determined by using the results from the diffusion-rate and mixing-quality experiments. The experimental and semianalytical outcome of this research would be useful in the determination of the best solvent type for a given oil and in understanding the key factors that influence the quality of mixtures including viscosity reduction and probable asphaltene precipitation.

2012 ◽  
Vol 15 (02) ◽  
pp. 182-194 ◽  
Author(s):  
V.. Pathak ◽  
T.. Babadagli ◽  
N.R.. R. Edmunds

Summary In earlier work (Pathak et al. 2010, 2011), we presented the initial results for heavy-oil and bitumen recovery using heated solvent vapors. The heavy-oil- and bitumen-saturated sandpack samples of different heights were exposed to heated vapors of butane or propane at a constant temperature and pressure for an extended duration of time. The produced oil was analyzed for recovery, asphaltene content, viscosity, composition, and refractive index. Recovery was found to be very sensitive to temperature and pressure. The current work was undertaken to better understand the physics of the process and to explain the observations of the earlier experiments using additional experiments on tighter samples of different sizes, numerical simulation, and visualization experiments. The effects of temperature and pressure on the recovery were studied using a commercial reservoir simulator. Propane and butane were used as solvents. Asphaltene precipitation was also modeled. A qualitative history match with the experiments on different porous-media types was achieved by mainly considering the permeability reduction caused by asphaltene precipitation; pore plugging; the extent of interaction between the solvent and oil phases; and parameters such as model height, vertical permeability, and gravity. The effect of asphaltene deposition on models of varying permeabilities was also studied. To investigate the phenomenon further, visualization experiments were performed. 2D Hele-Shaw models of different dimensions were constructed by joining two Plexiglass sheets from three sides, or in some experiments, from all sides. The models were saturated with heavy oil and left open on one side (or all sides) and were exposed to different types of solvents. The setup was monitored continuously to observe fluid fronts and asphaltene precipitation. By use of this analysis, the mechanics of the process was clarified from the effect of solvent type on the recovery process. The optimum operating temperature for the hot-solvent process and the dominant mechanisms were identified. The dynamics of the asphaltene deposition and its effect on oil recovery were clarified through visual and numerical models.


2011 ◽  
Author(s):  
Varun Pathak ◽  
Tayfun Babadagli ◽  
Neil Edmunds

Sign in / Sign up

Export Citation Format

Share Document