fractured carbonates
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexey Ruzhnikov ◽  
Ashley Johnson

Abstract Fractured carbonate formations around the world are prone to lost circulation that not only affects the well construction process but creating a longtime effect on the wellbore integrity. Despite multiple attempts to cure them the success rate is usually low. This manuscript is aiming to provide a new vision on the reason of lost circulation across carbonates. To have better understanding of the complete losses across the fractured carbonates the series of studies were initiated. At first to understand the strength of the loss zone the fracture closing pressure was evaluated via study of the fluid level in the annulus and back-calculation of the drilling fluid density effect on it. Secondary, the rock properties across the loss circulation zones were studied by using the microresistivity images, dip data, and imaging of fluid-saturated porous media. At last, the trial tests with different treatment materials were performed to evaluate the effect of it on curing the losses. The results of the studies brought new information and explained some previous unknowns. The formation strength across lost circulation zone was measured and it was confirmed to remain constant despite other changes of the well conduction parameters. It was also confirmed that the carbonates are naturally highly fractured having over 900 fractures along the wellbore. The lost circulation zone was characterized, and it was confirmed that the losses were not related to the fractures but rather to the karst, dissolution and to mega-fractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified mega-fractures and karst zones exceed the fractures by 100 times in true vertical depth, and in horizontal wells the difference is thousands times due to measured depth. This new information explains the previous unsuccessful attempts with the conventional lost circulation materials. Further based on the newly available information the mathematic description of the lost circulation zones was provided.


2021 ◽  
Author(s):  
Alexey Ruzhnikov

Abstract Fractured carbonate formations are prone to lost circulation, which affects the well construction process and has longtime effect on well integrity. Depending on the nature of losses (either induced or related to local dissolutions) the success rate is different when the induced losses can be cured with a high chance, and the one related to dissolutions may take a long time, and despite multiple attempts, the success rate is normally low. To have a better understanding of the complete losses across the fractured carbonates, a series of studies were initiated. First, to understand the strength of the loss zone, the fracture closing pressure was evaluated studying the fluid level in the annulus and back-calculating the effect of drilling fluid density. Second, the formation properties across the loss circulation zones were studied using microresistivity images, dip data, and imaging of fluid-saturated porous media. The results of the studies brought a lot of new information and explained some previous mysteries. The formation strength across the lost circulation zone was measured, and it was confirmed that it remains constant despite other changes of the well construction parameters. Additionally, it was confirmed that the carbonates are naturally highly fractured, having over 900 fractures along the wellbore. The loss circulation zone was characterized, and it was confirmed that the losses are not related to the fractures but rather to the karst, dissolution, and megafractures. The size and dip of the fractures were identified, and it was proven the possibility to treat them with conventional materials. However, the size of identified megafractures and karst zones exceeding the fractures by 10 times in true vertical depth, and in horizontal wells the difference is even higher due to measured depth. This new information helps to explain the previous unsuccessful attempts with the conventional lost circulation materials. The manuscript provides new information on the fractured carbonate formation characterization not available previously in the literature. It allows to align the subsurface and drilling visions regarding the nature of the losses and further develop the curing mechanisms.


2021 ◽  
Author(s):  
Maryam Tabatabaei ◽  
Arash Dahi Taleghani

Abstract Lost circulation problems may result in a significant downtime, a considerable reduction of the rate of penetration, or even well control problems. Despite advances in manufacturing lost circulation materials (LCMs), some formations, like heavily fractured carbonates, have complete losses during drilling. We develop smart LCMs using shape memory polymers (SMPs), and program them thermo-mechanically to satisfy size limitations imposed by bottomhole assemblies (BHA). Elevated downhole temperatures act as an external trigger to recover the permanent shape of LCMs, which could expand ten times larger than the temporary (programmed) dimensions for deployment. Smart LCMs are a combination of various material categories such as granular, fibrous (one-dimensional or 1-D) and planar (two-dimensional or 2-D) configurations that resume to the original shape after exposure to high temperatures. The LCMs form different structures such as flatted pellet, disc-shaped, spider-shaped, and spindled, which, respectively, presents grains, 1-D fibers, 2-D stars, and 2-D lattices after recovery. A combination of the above categories attempt to build three-dimensional (3-D) plugging capabilities across various sized fractures.


2020 ◽  
Vol 50 (3) ◽  
Author(s):  
Rodrigo Irineu Cerri ◽  
George Luiz Luvizotto ◽  
Francisco Manoel Wohnrath Tognoli ◽  
Lucas Veríssimo Warren ◽  
Juliana Okubo ◽  
...  

2020 ◽  
Author(s):  
Temirlan Zhekenov ◽  
Anna' Norkina ◽  
Oleg Petrashov ◽  
Kamilla Chettykbayeva ◽  
Danila Mylnikov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document