Simulation of Matrix-Fracture Interaction in Low-Permeability Fractured Unconventional Reservoirs

Author(s):  
D. Y. Ding ◽  
N. Farah ◽  
B. Bourbiaux ◽  
Y-S. Wu ◽  
I. Mestiri
SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1389-1411 ◽  
Author(s):  
D. Y. Ding ◽  
N.. Farah ◽  
B.. Bourbiaux ◽  
Y.-S.. -S. Wu ◽  
I.. Mestiri

Summary Unconventional reservoirs, such as shale-gas or tight oil reservoirs, are generally highly fractured (including hydraulic fractures and stimulated and nonstimulated natural fractures of various sizes) and embedded in low-permeability formations. One of the main production mechanisms in unconventional reservoirs is the flow exchange between matrix and fracture media. However, because of extremely low matrix permeability, the matrix/fracture exchange is very slow and the transient flow may last several years to tens of years, or almost the entire production life. The commonly used dual-porosity (DP) modeling approach involves a computation of pseudosteady-state matrix/fracture transfers with homogenized fluid and flow properties within the matrix medium. This kind of model clearly fails to handle the long-lasting matrix/fracture interaction in very-low-permeability reservoirs, especially for multiphase flow with phase-change problems. Moreover, a DP model is not adapted for the simulation of matrix/fracture exchange when fractures are described by a discrete-fracture network (DFN). This paper presents an embedded discrete-fracture model (EDFM) dependent on the multiple-interacting-continua (MINC) proximity function to overcome this insufficiency of the conventional DP model.


2020 ◽  
Author(s):  
Anna Shevtsova ◽  
Egor Filev ◽  
Maria Bobrova ◽  
Sergey Stanchits ◽  
Vladimir Stukachev

<p>Nowadays Hydraulic Fracturing (HF) is one of the most effective stimulation technique for hydrocarbon extraction from unconventional reservoirs, as well as enhanced geothermal applications. Practical applications of HF can have different aims. In one case, we need to stop cracks inside the host rock to avoid some HF breakthroughs into other formations and possible groundwater pollutions. The second situation is when we need to fracture several bedding planes in a reservoir which has a complex structure, especially in case of the presence of multiple natural fractures in unconventional reservoir. It is important to study hydraulic fracturing, its propagation and conditions of interaction with interfaces in laboratory conditions before expensive field application.</p><p>The present work demonstrates the results of a laboratory study designed to understand fracture interaction with artificial interfaces. For the first series of experiments, we used some natural materials such as shales, sandstones, dolomites and limestones with different porosity, permeability and mechanical properties. During these experiments we initiated hydraulic fracturing in homogeneous specimens with and without artificial surfaces, modelling natural fractures or bedding planes in unconventional reservoirs. For the second series of experiments, we used a combination of different materials to understand HF propagation in heterogeneous media, to study conditions of HF crossing or arrest at the boundaries between different types of rock. These laboratory experiments were done to create HF simulating natural processes in fractured and heterogeneous rocks or reservoirs.</p><p>Series of hydraulic fracturing experiments under uniaxial load conditions were conducted using the multifunctional system MTS 815.04. Before testing, samples were scanned by 3D CT System to characterize the rock fabric, and after testing, CT scanning was repeated to characterize 3D shape of created HF. The dynamics of HF initiation and propagation was monitored by Acoustic Emission (AE) technique, using piezoelectric sensors glued to the surface of the rock to record elastic waves radiated during the process of HF propagation. The experiments were made with different injection rates and fluid viscosities. Changes in radial strain, injection pressure and microseismic data over time were recorded.</p><p>As the result, these experiments indicate significant factors (rock heterogeneity, porosity, permeability, fluid viscosity and injection rate), influencing cracks initiation, propagation or arrest on the artificial interface. The fracture propagation and opening are characterized by measured radial deformation, fluid pressure and geometrical orientation in the sample volume. The experiments demonstrated, that fracture easily crossed artificial surface in the homogeneous limestone samples. And cracks initiated in limestone were arrested on the border with shale. In all cases combination of the AE and deformation monitoring allows to indicate fracture initiation, propagation and arrest.</p>


2004 ◽  
Author(s):  
Edgar R. Rangel-German ◽  
Anthony R. Kovscek

2021 ◽  
Author(s):  
Andrei Tsyhankou ◽  
Alyaksandr Kanyushenka ◽  
Alyaksandr Hrudzinin ◽  
Alyaksei Kudrashou

Abstract The results of the well 10s2-Savichskaya drilling, laboratory core research are set out. Based on the results of integration the latest methods of wire line survey, laboratory core samples research, seismic facies analysis, typical lithotypes of the Savichsko-Bobrovichi area rocks were identified, reservoir features were predicted, the prospects of inter-salt deposits for identifying accumulations of hydrocarbons in unconventional reservoirs were substantiated. A perspective zone was identified and recommendations for drilling a pilot bore were given.


2010 ◽  
Vol 13 (01) ◽  
pp. 109-117 ◽  
Author(s):  
V.. Er ◽  
T.. Babadagli

Summary CO2 injection has been applied in naturally fractured reservoirs (NFRs) for the purpose of enhanced oil recovery (i.e., the Wey-burn and Midale fields, Canada; the Wasson and Slaughter fields, USA; and the Bati Raman field, Turkey). The matrix part of these types of reservoirs could potentially be a good storage medium as well. Understanding the matrix/fracture interaction during this process and the dynamics of the flow in this dual-porosity system requires visual analyses. We mimicked fully miscible CO2 injection in NFRs using 2D models with a single fracture and oil (solute)/hydrocarbon solvent pairs. The focus was on the visual pore-scale analysis of miscibility interaction, breakthrough of solvent through fracture, transfer between matrix and fracture, and the dynamics of miscible displacement inside the matrix. First, matrix/fracture interaction was studied intensively using 2D glass-bead models experimentally. The model was prepared using acrylic sheets and glass beads saturated with oil as a porous medium while a narrow gap of 1-mm size containing filter paper served as a fracture. The first contact miscible solvent (pentane) was injected into the fracture, and the flow distribution was monitored using an image-acquisition and -processing system. The produced solvent and solute were continuously analyzed for compositional study. The effects of several parameters, such as flow rate, viscosity ratio (oil/solvent), and gravity, were studied. Next, the process was modeled numerically using a commercial compositional simulator, and the saturation distribution in the matrix was matched to experimental data. The key parameters in the matching process were the effective diffusion coefficients and the longitudinal and the transverse dispersivities. The diffusion coefficients were specified for each fluid, and dispersivities were assigned into gridblocks separately for the fracture and the matrix.


Sign in / Sign up

Export Citation Format

Share Document