Miscible Interaction Between Matrix and Fracture: A Visualization and Simulation Study

2010 ◽  
Vol 13 (01) ◽  
pp. 109-117 ◽  
Author(s):  
V.. Er ◽  
T.. Babadagli

Summary CO2 injection has been applied in naturally fractured reservoirs (NFRs) for the purpose of enhanced oil recovery (i.e., the Wey-burn and Midale fields, Canada; the Wasson and Slaughter fields, USA; and the Bati Raman field, Turkey). The matrix part of these types of reservoirs could potentially be a good storage medium as well. Understanding the matrix/fracture interaction during this process and the dynamics of the flow in this dual-porosity system requires visual analyses. We mimicked fully miscible CO2 injection in NFRs using 2D models with a single fracture and oil (solute)/hydrocarbon solvent pairs. The focus was on the visual pore-scale analysis of miscibility interaction, breakthrough of solvent through fracture, transfer between matrix and fracture, and the dynamics of miscible displacement inside the matrix. First, matrix/fracture interaction was studied intensively using 2D glass-bead models experimentally. The model was prepared using acrylic sheets and glass beads saturated with oil as a porous medium while a narrow gap of 1-mm size containing filter paper served as a fracture. The first contact miscible solvent (pentane) was injected into the fracture, and the flow distribution was monitored using an image-acquisition and -processing system. The produced solvent and solute were continuously analyzed for compositional study. The effects of several parameters, such as flow rate, viscosity ratio (oil/solvent), and gravity, were studied. Next, the process was modeled numerically using a commercial compositional simulator, and the saturation distribution in the matrix was matched to experimental data. The key parameters in the matching process were the effective diffusion coefficients and the longitudinal and the transverse dispersivities. The diffusion coefficients were specified for each fluid, and dispersivities were assigned into gridblocks separately for the fracture and the matrix.

2021 ◽  
Author(s):  
Aymen AlRamadhan ◽  
Yildiray Cinar ◽  
Arshad Hussain ◽  
Nader BuKhamseen

Abstract This paper presents a numerical study to examine how the interplay between the matrix imbibition capillary pressure (Pci) and matrix-fracture transfer affects oil recovery from naturally-fractured reservoirs under waterflooding. We use a dual-porosity, dual-permeability (DPDP) finite difference simulator to investigate the impact of uncertainties in Pci on the waterflood recovery behavior and matrix-fracture transfer. A comprehensive assessment of the factors that control the matrix-fracture transfer, namely Pci, gravity forces, shape factor and fracture-matrix permeabilities is presented. We examine how the use of Pci curves in reservoir simulation can affect the recovery assessment. We present two conceptual scenarios to demonstrate the impact of spontaneous and forced imbibition on the flood-front movement, waterflood recovery processes, and ultimate recovery in the DPDP reservoir systems of varying reservoir quality. The results demonstrate that the inclusion of Pci in reservoir simulation delays the breakthrough time due to a higher displacement efficiency. The study reveals that the matrix-fracture transfer is mainly controlled by the fracture surface area, fracture permeability, shape factor, and the uncertainty in Pci. We underline a discrepancy among various shape factors proposed in the literature due to three main factors: (1) the variations in matrix-block geometries considered, (2) how the physics of imbibition forces that control the multiphase fluid transfer is captured, and (3) how the assumption of pseudo steady-state flow is addressed.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 112-120 ◽  
Author(s):  
Øyvind Eide ◽  
Martin A. Fernø ◽  
Zachary Alcorn ◽  
Arne Graue

Summary This work demonstrates that diffusion may be a viable oil-recovery mechanism in fractured reservoirs during injection of carbon dioxide (CO2) for enhanced oil recovery, depending on the CO2 distribution within the fracture network and distance between fractures. High oil recovery was observed during miscible, supercritical CO2 injection (RF = 86% original oil in place) in the laboratory with a fractured chalk core plug with a large permeability contrast. Dynamic 3D fluid saturations from computed-tomography (CT) imaging made it possible to study the local oil displacement in the vicinity of the fracture, and to calculate an effective diffusion coefficient with analytical methods. The obtained diffusion coefficient varies between 0.83 and 1.2 ×10−9m2/s, depending on the method used for calculation. A numerical sensitivity analysis, with a validated numerical model that reproduced the experiments, showed that the rate of oil production during CO2 injection declined exponentially with increasing diffusion lengths from the CO2-filled fracture and oil-filled matrix. In a numerical upscaling effort, with the experimentally achieved diffusion coefficient, oil-recovery rates and local flow were studied in an inverted five-spot pattern in a heavily fractured carbonate reservoir.


2014 ◽  
Vol 17 (02) ◽  
pp. 286-301 ◽  
Author(s):  
K.. Naderi ◽  
T.. Babadagli

Summary Because of low efficiencies and the high cost of the individual injection of steam and solvent for heavy-oil recovery, their hybrid applications have gained significant attention recently. Although numerous laboratory studies exist and there are a considerable number of field projects for sandstone environments, fractured carbonates lack technologies to drain matrix oil efficiently. An alternative-method injection of solvent and steam was proposed and tested earlier (Babadagli and Al-Bahlani 2008). This process applies steam initially to condition the matrix oil for succeeding solvent injection and steam reinjection to retrieve solvent in the matrix and to recover additional upgraded oil. The present study uses carbon dioxide (CO2) as a solvent and compares it with hydrocarbon solvents in this type of application. To clarify the physics of the process and to test the applicability of the method for different reservoir and injection conditions, we conducted a series of experiments by first injecting steam, followed by CO2 injection. In the third cycle, steam was injected again to produce upgraded oil in the matrix. The experiments were performed under static conditions (soaking sand and carbonate samples in steam or CO2 chambers) at different temperatures and pressures. CO2 is shown to be a reasonable alternative for hydrocarbon solvents in such a process in terms of cost and benefits by reducing the solvent expenses, keeping the oil-production levels, and disposing of a greenhouse gas.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2243-2259 ◽  
Author(s):  
Pengfei Dong ◽  
Maura Puerto ◽  
Guoqing Jian ◽  
Kun Ma ◽  
Khalid Mateen ◽  
...  

Summary Oil recovery in heterogeneous carbonate reservoirs is typically inefficient because of the presence of high-permeability fracture networks and unfavorable capillary forces within the oil-wet matrix. Foam, as a mobility-control agent, has been proposed to mitigate the effect of reservoir heterogeneity by diverting injected fluids from the high-permeability fractured zones into the low-permeability unswept rock matrix, hence improving the sweep efficiency. This paper describes the use of a low-interfacial-tension (low-IFT) foaming formulation to improve oil recovery in highly heterogeneous/fractured oil-wet carbonate reservoirs. This formulation provides both mobility control and oil/water IFT reduction to overcome the unfavorable capillary forces preventing invading fluids from entering an oil-filled matrix. Thus, as expected, the combination of mobility control and low-IFT significantly improves oil recovery compared with either foam or surfactant flooding. A three-component surfactant formulation was tailored using phase-behavior tests with seawater and crude oil from a targeted reservoir. The optimized formulation simultaneously can generate IFT of 10−2 mN/m and strong foam in porous media when oil is present. Foam flooding was investigated in a representative fractured core system, in which a well-defined fracture was created by splitting the core lengthwise and precisely controlling the fracture aperture by applying a specific confining pressure. The foam-flooding experiments reveal that, in an oil-wet fractured Edward Brown dolomite, our low-IFT foaming formulation recovers approximately 72% original oil in place (OOIP), whereas waterflooding recovers only less than 2% OOIP; moreover, the residual oil saturation in the matrix was lowered by more than 20% compared with a foaming formulation lacking a low-IFT property. Coreflood results also indicate that the low-IFT foam diverts primarily the aqueous surfactant solution into the matrix because of (1) mobility reduction caused by foam in the fracture, (2) significantly lower capillary entry pressure for surfactant solution compared with gas, and (3) increasing the water relative permeability in the matrix by decreasing the residual oil. The selective diversion effect of this low-IFT foaming system effectively recovers the trapped oil, which cannot be recovered with single surfactant or high-IFT foaming formulations applied to highly heterogeneous or fractured reservoirs.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 440-450 ◽  
Author(s):  
Bing Wei ◽  
Ke Gao ◽  
Tao Song ◽  
Xiang Zhang ◽  
Wanfen Pu ◽  
...  

Summary Recent reports have demonstrated that carbon dioxide (CO2) injection can further raise the oil recovery of fractured tight reservoirs after natural depletion, with major projects in progress worldwide. There is, however, a lack of understanding of the mass-exchange process between the matrix and fracture at pore scale. In this study, a matrix (0.8 md)/fracture model was designed to experimentally simulate a CO2-cyclic-injection process at 80°C and 35 MPa (Lucaogou tight formation). The oil (dead-oil) concentration in the matrix and fracture was continuously monitored online using a low-field nuclear-magnetic-resonance (NMR) technique aiming to quantify the oil recovery in situ and clarify the mass-exchange behaviors. The results showed that CO2 cyclic injection was promising in improving the oil recovery of fractured tight reservoirs. Nevertheless, the oil-recovery rates rapidly declined with the cycle of CO2 injection and the incremental oil was primarily produced by large pores with 100 ms > T2 > 3.0 ms. The NMR T2 profiles of the model evidenced the drainage of the matrix oil by CO2 toward the fracture. Because of the light-hydrocarbon extraction, the produced oils became lighter than the original oil. We noted that the main driving forces of the incremental oil recovery were CO2 displacement, CO2/oil interactions (mainly extraction and solubility), and pressure gradient (depressurization). In the first cycle, the CO2/oil interactions driven by CO2 diffusion during soaking enhanced the mass exchange between the matrix and the fracture. However, from the second cycle, CO2/oil interactions and CO2 displacement became insignificant. The results of this study supplement earlier findings and can provide insights into the CO2-enhanced-oil- recovery (EOR) mechanisms in fractured tight reservoirs. NOTE: Supporting information available.


2009 ◽  
Vol 289-292 ◽  
pp. 145-152
Author(s):  
Ivo Stloukal ◽  
Jiří Čermák

Diffusion of 65Zn in two commercial Mg-based alloys AZ91 and QE22 with short Saffil fibers was studied. Experiments were carried out in the temperature interval 648 – 728 K by serial sectioning method. The effective diffusion coefficients Deff were compared with 65Zn diffusion coefficients Dv obtained with the same alloys without Saffil fibers. The evaluation of the influence of the interface between the matrix and the fibers upon Deff was done and the zinc diffusion coefficient Di in the interface boundary matrix/Saffil was estimated. Unlike the Arrhenius-like behavior of volume diffusion in both alloys, it was observed that the temperature dependence of both Deff and Di was significantly concave in the measured temperature interval. This behavior was attributed to relaxation of thermo-elastic stresses in the composite induced by a large difference between coefficients of thermal expansion (CTE) of Saffil fibers and metal matrix. The maximum values of Deff and Di, respectively, lie close to 693 K, where CTE has a minimum.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 101-111 ◽  
Author(s):  
Mohammad Mirzaei ◽  
David A. DiCarlo ◽  
Gary A. Pope

Summary Imbibition of surfactant solution into the oil-wet matrix in fractured reservoirs is a complicated process that involves gravity, capillary, viscous, and diffusive forces. The standard experiment for testing imbibition of surfactant solution involves an imbibition cell, in which the core is placed in the surfactant solution and the recovery is measured vs. time. Although these experiments prove the effectiveness of surfactants, little insight into the physics of the problem is achieved. In this study, we performed water and surfactant flooding into oil-wet fractured cores and monitored the imbibition of the surfactant solution by use of computed-tomography (CT) scanning. From the CT images, the surfactant-imbibition dynamics as a function of height along the core was obtained. Although the waterflood only displaced oil from the fracture, the surfactant solution imbibed into the matrix; the imbibition is frontal, with the greatest imbibition rate at the bottom of the core, and the imbibition decreases roughly linearly with height. Experiments with cores of different sizes showed that increase in either the height or the diameter of the core causes decrease in imbibition and fractional oil-recovery rate. We also perform numerical simulations to model the observed imbibition. On the basis of the experimental measurements and numerical-simulation results, we propose a new scaling group that includes both the diameter and the height of the core. We show that the new scaling groups scale the recovery curves better than the traditional scaling group.


2021 ◽  
Author(s):  
Sherif Fakher ◽  
Youssef Elgahawy ◽  
Hesham Abdelaal ◽  
Abdulmohsin Imqam

Abstract Enhanced oil recovery (EOR) in shale reservoirs has been recently shown to increase oil recovery significantly from this unconventional oil and gas source. One of the most studied EOR methods in shale reservoirs is gas injection, with a focus on carbon Dioxide (CO2) mainly due to the ability to both enhance oil recovery and store the CO2 in the formation. Even though several shale plays have reported an increase in oil recovery using CO2 injection, in some cases this method failed severely. This research attempts to investigate the ability of the CO2 to mobilize crude oil from the three most prominent features in the shale reservoirs, including shale matrix, natural fractures, and hydraulically induced fracture. Shale cores with dimensions of 1 inch in diameter and approximately 1.5 inch in length were used in all experiments. The impact of CO2 soaking time and soaking pressure on the oil recovery were studied. The cores were analyzed to understand how and where the CO2 flowed inside the cores and which prominent feature resulted in the increase in oil recovery. Also, a pre-fractured core was used to run an experiment in order to understand the oil recovery potential from fractured reservoirs. Results showed that oil recovery occurred from the shale matrix, stimulation of natural fractures by the CO2, and from the hydraulic fractures with a large volume coming from the stimulated natural fractures. By understanding where the CO2 will most likely be most productive, proper design of the CO2 EOR in shale can be done in order to maximize recovery and avoid complications during injection and production which may lead to severe operational problems.


Fluids ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 70 ◽  
Author(s):  
Ahmad Zareidarmiyan ◽  
Hossein Salarirad ◽  
Victor Vilarrasa ◽  
Silvia De Simone ◽  
Sebastia Olivella

Geologic carbon storage will most likely be feasible only if carbon dioxide (CO2) is utilized for improved oil recovery (IOR). The majority of carbonate reservoirs that bear hydrocarbons are fractured. Thus, the geomechanical response of the reservoir and caprock to IOR operations is controlled by pre-existing fractures. However, given the complexity of including fractures in numerical models, they are usually neglected and incorporated into an equivalent porous media. In this paper, we perform fully coupled thermo-hydro-mechanical numerical simulations of fluid injection and production into a naturally fractured carbonate reservoir. Simulation results show that fluid pressure propagates through the fractures much faster than the reservoir matrix as a result of their permeability contrast. Nevertheless, pressure diffusion propagates through the matrix blocks within days, reaching equilibrium with the fluid pressure in the fractures. In contrast, the cooling front remains within the fractures because it advances much faster by advection through the fractures than by conduction towards the matrix blocks. Moreover, the total stresses change proportionally to pressure changes and inversely proportional to temperature changes, with the maximum change occurring in the longitudinal direction of the fracture and the minimum in the direction normal to it. We find that shear failure is more likely to occur in the fractures and reservoir matrix that undergo cooling than in the region that is only affected by pressure changes. We also find that stability changes in the caprock are small and its integrity is maintained. We conclude that explicitly including fractures into numerical models permits identifying fracture instability that may be otherwise neglected.


2002 ◽  
Vol 5 (02) ◽  
pp. 154-162 ◽  
Author(s):  
S. Sarda ◽  
L. Jeannin ◽  
R. Basquet ◽  
B. Bourbiaux

Summary Advanced characterization methodology and software are now able to provide realistic pictures of fracture networks. However, these pictures must be validated against dynamic data like flowmeter, well-test, interference-test, or production data and calibrated in terms of hydraulic properties. This calibration and validation step is based on the simulation of those dynamic tests. What has to be overcome is the challenge of both accurately representing large and complex fracture networks and simulating matrix/ fracture exchanges with a minimum number of gridblocks. This paper presents an efficient, patented solution to tackle this problem. First, a method derived from the well-known dual-porosity concept is presented. The approach consists of developing an optimized, explicit representation of the fractured medium and specific treatments of matrix/fracture exchanges and matrix/matrix flows. In this approach, matrix blocks of different volumes and shapes are associated with each fracture cell depending on the local geometry of the surrounding fractures. The matrix-block geometry is determined with a rapid image-processing algorithm. The great advantage of this approach is that it can simulate local matrix/fracture exchanges on large fractured media in a much faster and more appropriate way. Indeed, the simulation can be carried out with a much smaller number of cells compared to a fully explicit discretization of both matrix and fracture media. The proposed approach presents other advantages owing to its great flexibility. Indeed, it accurately handles the cases in which flows are not controlled by fractures alone; either the fracture network may be not hydraulically connected from one well to another, or the matrix may have a high permeability in some places. Finally, well-test cases demonstrate the reliability of the method and its range of application. Introduction In recent years, numerous research programs have been focusing on the topic of fractured reservoirs. Major advances were made, and oil companies now benefit from efficient methodologies, tools, and software for fractured reservoir studies. Nowadays, a study of a fractured reservoir, from fracture detection to full-field simulation, includes the following main steps: geological fracture characterization, hydraulic characterization of fractures, upscaling of fracture properties, and fractured reservoir simulation. Research on fractured reservoir simulation has a long history. In the early 1960s, Barenblatt and Zheltov1 first introduced the dual-porosity concept, followed by Warren and Root,2 who proposed a simplified representation of fracture networks to be used in dual-porosity simulators. Based on this concept, reservoir simulators3 are now able to correctly reproduce the main driving mechanisms occurring in fractured reservoirs, such as water imbibition, gas/oil and water/oil gravity drainage, molecular diffusion, and convection in fractures. Even single-medium simulators can perform fractured reservoir simulation when adequate pseudocapillary pressure curves and pseudorelative permeability curves can be input. Indeed, except for particular cases such as thermal recovery processes, full-field simulation of fractured reservoirs is no longer a problem. Geological characterization of fractures progressed considerably in the 1990s. The challenge was to analyze and integrate all the available fracture data to provide a reliable description of the fracture network both at field scale and at local reservoir cell scale. Tools have been developed for merging seismic, borehole imaging, lithological, and outcrop data together with the help of geological and geomechanical rules.3 These tools benefited from the progress of seismic acquisition and borehole imaging. Indeed, accurate seismic data lead to reliable models of large-scale fracture networks, and borehole imaging gives the actual fracture description along the wells, which enables a reliable statistical determination of fracture attributes. Finally, these tools provide realistic pictures of fracture networks. They are applied successfully in numerous fractured-reservoir studies. The upscaling of fracture properties is the problem of translating the geological description of fracture networks into reservoir simulation parameters. Two approaches are possible. In the first one, the fractured reservoir is considered as a very heterogeneous matrix reservoir; therefore, one applies the classical techniques available for heterogeneous single-medium upscaling. The second approach is based on the dual-porosity concept and consists of upscaling the matrix and the fracture separately. Based on this second approach, methodologies and software were developed in the 1990s to calculate equivalent fracture parameters with respect to the dual-porosity concept (i.e., a fracture-permeability tensor with main flow directions and anisotropy and a shape factor that controls the matrix/fracture exchange kinetics3–5). For a given reservoir grid cell, the upscaling procedures consist of generating the corresponding 3D discrete fracture network and computing the equivalent parameters from this network. In particular, the permeability tensor is computed from the results of steady-state flow simulations in the discrete fracture network alone (without the matrix).


Sign in / Sign up

Export Citation Format

Share Document