CO2 Storage and Enhanced Gas Recovery: Using Extended Black Oil Modelling to Simulate CO2 Injection on a North Sea Depleted Gas Field

2017 ◽  
Author(s):  
A. Iogna ◽  
J. Guillet-Lhermite ◽  
C. Wood ◽  
J. P. Deflandre
2011 ◽  
Vol 51 (2) ◽  
pp. 684
Author(s):  
Peter Cook ◽  
Yildiray Cinar ◽  
Guy Allinson ◽  
Charles Jenkins ◽  
Sandeep Sharma ◽  
...  

Successful completion of the first stage of the CO2CRC Otway Project demonstrated safe and effective CO2 storage in the Naylor depleted gas field and confirmed our ability to model and monitor subsurface behaviour of CO2. It also provided information of potential relevance to CO2 enhanced gas recovery (EGR) and to opportunities for CO2 storage in depleted gas fields. Given the high CO2 concentration of many gas fields in the region, it is important to consider opportunities for integrating gas production, CO2 storage in depleted gas fields, and CO2-EGR optimisation within a production schedule. The use of CO2-EGR may provide benefits through the recovery of additional gas resources and a financial offset to the cost of geological storage of CO2 from gas processing or other anthropogenic sources, given a future price on carbon. Globally, proven conventional gas reserves are 185 trillion m3 (BP Statistical Review, 2009). Using these figures and Otway results, a replacement efficiency of 60 % (% of pore space available for CO2 storage following gas production) indicates a global potential storage capacity—in already depleted plus reserves—of approximately 750 Gigatonnes of CO2. While much of this may not be accessible for technical or economic reasons, it is equivalent to more than 60 years of total global stationary emissions. This suggests that not only gas—as a lower carbon fuel—but also depleted gas fields, have a major role to play in decreasing CO2 emissions worldwide.


2013 ◽  
Vol 9 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Leonhard Ganzer ◽  
Viktor Reitenbach ◽  
Dieter Pudlo ◽  
Daniel Albrecht ◽  
Arron Tchouka Singhe ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7495
Author(s):  
Abdirizak Omar ◽  
Mouadh Addassi ◽  
Volker Vahrenkamp ◽  
Hussein Hoteit

CO2-based enhanced gas recovery (EGR) is an appealing method with the dual benefit of improving recovery from mature gas reservoirs and storing CO2 in the subsurface, thereby reducing net emissions. However, CO2 injection for EGR has the drawback of excessive mixing with the methane gas, therefore, reducing the quality of gas produced and leading to an early breakthrough of CO2. Although this issue has been identified as a major obstacle in CO2-based EGR, few strategies have been suggested to mitigate this problem. We propose a novel hybrid EGR method that involves the injection of a slug of carbonated water before beginning CO2 injection. While still ensuring CO2 storage, carbonated water hinders CO2-methane mixing and reduces CO2 mobility, therefore delaying breakthrough. We use reservoir simulation to assess the feasibility and benefit of the proposed method. Through a structured design of experiments (DoE) framework, we perform sensitivity analysis, uncertainty assessment, and optimization to identify the ideal operation and transition conditions. Results show that the proposed method only requires a small amount of carbonated water injected up to 3% pore volumes. This EGR scheme is mainly influenced by the heterogeneity of the reservoir, slug volume injected, and production rates. Through Monte Carlo simulations, we demonstrate that high recovery factors and storage ratios can be achieved while keeping recycled CO2 ratios low.


2013 ◽  
Vol 37 ◽  
pp. 4804-4817 ◽  
Author(s):  
Owain Tucker ◽  
Martin Holley ◽  
Richard Metcalfe ◽  
Sheryl Hurst

Sign in / Sign up

Export Citation Format

Share Document