anthropogenic sources
Recently Published Documents


TOTAL DOCUMENTS

1651
(FIVE YEARS 651)

H-INDEX

74
(FIVE YEARS 9)

2022 ◽  
Vol 9 ◽  
Author(s):  
Bhupendra Pratap Singh ◽  
Gaber E. Eldesoky ◽  
Pramod Kumar ◽  
Prakash Chandra ◽  
Md Ataul Islam ◽  
...  

Novel Coronavirus disease (COVID-19), after being identified in late December 2019 in Wuhan city of China, spread very fast and has affected all the countries in the world. The impact of lockdowns on particulate matter during the lockdown period needs attention to explore the correlation between anthropogenic and natural emissions. The current study has demonstrated the changes in fine particulate matter PM2.5, PM10 and their effect on air quality during the lockdown. The air quality before the lockdown was low in New Delhi (India) and Riyadh (Saudi Arabia), among major cities worldwide. The air quality of India is influenced by dust and sand from the desert and surrounding areas. Thus, the current study becomes important to analyse changes in the air quality of the Indian sub-continent as impacted by dust storms from long distances. The result indicated a significant reduction of PM2.5 and PM10 from 93.24 to 37.89 μg/m3 and from 176.55 to 98.87 μg/m3 during the lockdown period as compared to pre lockdown period, respectively. The study shows that average concentrations of PM10 and PM2.5 have declined by -44% and -59% during the lockdown period in Delhi. The average value of median PM10 was calculated at 33.71 μg/m3 for Riyadh, which was lower than that value for New Delhi during the same period. The values of PM10 were different for pre and during the lockdown periods in Riyadh, indicating the considerable influence on air quality, especially the concentration of PM10, from both the natural (sand and dust storms) and the anthropogenic sources during the lockdown periods. However, relatively smaller gains in the improvement of air quality in Riyadh were correlated to the imposition of milder lockdown and the predominance of natural factors over the anthropogenic factors there. The Air Quality Index (AQI) data for Delhi showed the air quality to be ‘satisfactory’ and in the green category during the lockdown period. This study attempts to better understand the impact of particulate matter on the short- and long-term air quality in Delhi during the lockdown. This study has the scope of being scaled up nationwide, and this might be helpful in formulation air pollution reduction and sustainable management policies in the future.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Zhonggen Li ◽  
Yiming Huang ◽  
Xinyu Li ◽  
Guan Wang ◽  
Qingfeng Wang ◽  
...  

Atmospheric emission of heavy metals from different anthropogenic sources is a great concern to human beings due to their toxicities. In order to disclose the emission levels and the distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point (~900 °C) comparing to the high-temperature (1450 °C) clinker production process, solid samples representing the input and output flow of Zn during the entire production process in two preheater–precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed with different additives and retarder to make cement products. The high-temperature clinkerisation process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%, or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much lower than most previous reports, implying the CPs were not a crucial Zn emission source. However, the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore, further investigation on the environmental stability of Zn in such Zn-laden cement and concrete should be carried out.


Author(s):  
Nur Syahirah Zulkafflee ◽  
Nurul Adillah Mohd Redzuan ◽  
Sara Nematbakhsh ◽  
Jinap Selamat ◽  
Mohd Razi Ismail ◽  
...  

Paddy plants tend to accumulate heavy metals from both natural and anthropogenic sources, and this poses adverse risks to human health. The objective of this study was to investigate heavy metal contamination in paddy plants in Kelantan, Malaysia, and its health risk assessment. The bioaccumulation of heavy metals was studied by means of enrichment (EF) and translocation factors (TF). The health risk assessment was performed based on USEPA guidelines. The EF for heavy metals in the studied areas was in the descending order of Cu > As > Cr > Cd > Pb. Meanwhile, Cr and Pb exhibited higher TF values from stem to grain compared with the others. The combined hazard index (HI) resulting from five heavy metals exceeded the acceptable limit (HI >1). The lifetime cancer risk, in both adult and children, was beyond the acceptable limit (10−4) and mainly resulted from exposure. The total cancer risk (CRt) due to simultaneous exposures to multiple carcinogenic elements also exceeded 10−4. In conclusion, intake of heavy metal through rice ingestion is likely to cause both non-carcinogenic and carcinogenic health risks. Further research is required to investigate the extent of heavy metal contamination in agricultural soils and, moreover, to establish human exposure as a result of rice consumption.


Author(s):  
Bulbul Ongar ◽  
Hristo Beloev ◽  
Iliya Iliev ◽  
Assem Ibrasheva ◽  
Anara Yegzekova

Even though natural sources of air pollution account for over 50 % of sulphur compounds, 93 % of nitrogen oxide which are the most dangerous artificial anthropogenic sources of air pollution and primarily associated with the combustion of fossil fuel. Coal-fired thermal power plants and industrial fuel-burning plants that emit large quantities of nitrogen oxides (NО and NО2), solids (ash, dust, soot), as well as carbon oxides, aldehydes, organic acids into the atmosphere pollute the environment in majority. In the present work, a mathematical model and a scheme for calculating the formation of nitrogen oxide has been developed. Also, the dependence of the rate of release of fuel nitrogen from coal particles at the initial stage of gasification and content of volatiles has been obtained. The main regularities of the formation of NOx at the initial section of the flame in the ignition zone of the swirl burner flame during the combustion of Ekibastuz coal have been revealed. Modern environmental requirements for the modernization of existing and the creation of new heat and power facilities determine the exceptional relevance of the development of effective methods and constructions to reduce emissions of nitrogen oxides, sulfur oxides and ash to 200, 300, and 100 mg/nm3 at a=1.4. The dust consumption in all experiments was kept constant and amounted to 0.042 g/s, as well as with the results of calculating the thermal decomposition of the Ekibastuz coal dust, the recombination of atomic nitrogen into nitrogen molecules, and the kinetics of the formation of fuel nitric oxide. It was found that despite the presence of oxygen in Ekibastuz coal for gases Odaf=11.8 % in an inert atmosphere, nitrogen oxides are not formed


2022 ◽  
Vol 4 (1) ◽  
Author(s):  
Ana Margarida Pereira ◽  
Maria de Lurdes Nunes Enes Dapkevicius ◽  
Alfredo E. S. Borba

AbstractAgriculture is responsible for a great share of the anthropogenic sources of greenhouse gases that, by warming the earth, threaten its biodiversity. Among greenhouse gas emissions, enteric CH4 from livestock is an important target to slow down climate changes. The CH4 is originated from rumen fermentation and its concentration is affected by several factors, including genetics and nutrition. Ruminants have an extraordinary symbiosis with microorganisms (bacteria, fungi, and protozoa) that ferment otherwise indigestible carbohydrates, from which they obtain energy to grow and continue actively producing, among other products, volatile fatty acids, CO2 and H2. Detrimental ruminal accumulation of H2 is avoided by methanogenesis carried out by Archaea methanogens. Importantly, methanogenesis is not the only H2 sink pathway. In fact, other bacteria can reduce substrates using metabolic hydrogen formed during carbohydrate fermentation, namely propionate production and reductive acetogenesis, thus lowering the CH4 produced. Although the complexity of rumen poses challenges to mitigate CH4 production, the emergence of sequencing techniques that allow the study of microbial communities, gene expression, and metabolome are largely contributing to unravel pathways and key players in the rumen. Indeed, it is now recognized that in vivo emissions of CH4 are correlated to microbial communities, and particularly with the abundance of methanogens, several bacterial groups, and  their genes. The goal of CH4 mitigation is to work in favor of the natural processes, without compromising rumen function, animal health, and productivity. Notwithstanding, the major challenge continues to be the feasibility and affordability of the proposed solutions.


2022 ◽  
pp. 27-50
Author(s):  
Soumi Datta ◽  
Dwaipayan Sinha ◽  
Vidhi Chaudhary ◽  
Somnath Kar ◽  
Anjana Singh

Pollution has become a matter of grave concern at present with all the components of the environment laden with pollutants largely from anthropogenic sources and unplanned urbanization. Inland wetlands are very delicate ecosystems and encompass a variety of water bodies, namely ponds, rivers, swamps, etc. They house some unique floristic patterns that are crucial in the primary productivity and maintaining a balance of the wetland ecosystem. In addition to it, the inland water bodies are also productive and are of immense importance to humans. The inland wetlands are also an integral part of boosting the economy of the region as they support a number of industries including fishing and recreation. Thus pollution of water bodies has impacted the human race in a deleterious manner. This chapter is an attempt to overview the inland water bodies, their biodiversity pattern, pollution, and their effect on flora at large.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Sándor Gulyás ◽  
Andrea Torma ◽  
Norbert Pap ◽  
Pál Fodor ◽  
Máté Kitanics ◽  
...  

AbstractOne of the most influential rulers of the sixteenth century, Sultan Suleyman I, passed away and was buried temporarily near the fortress of Szigetvár in SW Hungary in 1566. Later, a memorial place was erected on the site in the second half of the sixteenth century. The complex was surrounded by a palisade system and a moat on its northern side. The site was fully destroyed in 1692, and the exact location vanished with time. Recent investigations of historical sources complemented by geophysical, archeological, and geoarcheological investigations managed to identify the location of the site, and probe corings revealed the moat system. This study presents the results of complex chronological, sedimentological, and geochemical investigations done on the sediments accumulated in the moat. Based on geoarcheological data, two major changes could have been noted in the nature of the deposit marking erosion and transportation of soil from the banks of the moat. Elevated concentrations of Fe and K, and high MS values mark the effects of fire on the deposit and accumulation of flue ash. A rise in heavy metals in these horizons is attributable to anthropogenic sources related to the destruction of the site. Chronological data comes from dateable artifacts reposited and 14C dates of charred cereal seeds. A Bayesian age model built using 14C ages constrained by written historical data on site use helped us to determine the age of moat construction and the referred erosion-accumulation events. The older event was dated around 1670, which is in line with historical records of the first siege of Szigetvár. The second event postdates 1684 and thus must correspond to the time of the site’s final siege and later destruction.


2021 ◽  
Vol 04 (04) ◽  
pp. 115-145
Author(s):  
Sumon Ganguli ◽  
◽  
Md. Akter Hosen Rifat ◽  
Dipta Das ◽  
Shahidul Islam ◽  
...  

Bangladesh relies mainly on groundwater for irrigation and drinking purposes. Groundwater, however, continuously polluted, is a major obstacle. Nowadays, Bangladesh is moving towards industrial revolution in a considerable speed. As part of this paper's attempt to analyze the groundwater pollution scenario in Bangladesh, specifically in the past two decades, about 100 articles, conference papers, and reports published in national and international journals and books were reviewed, as well as issues concerning pollution sources, health impact assessment, and future perspectives were discussed. The groundwater is contaminated by different contaminants, such as physico-chemicals, trace metals, and microbes. Human health is at great risk from arsenic (As) contamination; it is one of the biggest threats. The cancer risk and non-cancer risk of ingesting water are increased. On the other hand, a large number of peoples were affected due to waterborne diseases governed by microbial contamination. Geophysical and anthropogenic sources, the depth of wells, and geographical factors may influence groundwater pollution. It is recommended that policy makers should address the issue immediately and precautions should be taken wherever necessary.


MAUSAM ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 183-190
Author(s):  
H. N. SRIVASTAVA ◽  
S. V. DATAR ◽  
B. MUKHOPADHYAY

Annual mean values of the turbidity coefficients at Indian Background Air Pollution Monitoring Network' (BAPMoN) were compared for the periods 1973-1980and 1981-1985. It was found that there is a general increase of turbidity during the latter period at all the stations except at Kodaikanal and Pune, suggesting the effect of anthropogenic sources of pollution. Short term influence of volcanic eruptions were also discernible from the observations at Kodaikanal. Spectral analysis (FFT) at these stations brought out the predominant modes which could be explained on the basis of climatology and aerosol dispersion characteristics. The long term atmospheric turbidity observations (1973-1985) presented in this paper provide reliable data set for assessing the aerosol impact on radiation climate.  


2021 ◽  
Vol 5 (2) ◽  
pp. 18-27
Author(s):  
Hayder Issa ◽  
Azad Alshatteri

The current work accomplished a comprehensive evaluation of heavy metals pollution in soil of agricultural areas from Tanjaro sub-district, Sulaimaniyah province, Kurdistan Region, NE Iraq. Ninety soil samples were collected from thirty different locations. Concentrations of 16 heavy metals were measured by inductively coupled plasma optical emission spectrometry ICP-OES. The pollution index (PI), potential ecological risk index (Er), enrichment factor (EF), and ecological risk index (RI) were used to assess the pollution in soil samples. High levels of Li and Ni, and moderate Ba, Cd, Hg, and Pb according to the results of concentration analysis, pollution index (PI), and potential ecological risk (ERI). High levels of Cd and Hg according to the results of Er. Agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) suggested that heavy metals were generated from different natural and anthropogenic sources like natural weathering, fertilizer application, and transportation. Origins of Hg, Cd, Ni, and Pb are probably from activities like overuse of pesticides and fertilizers, whereas Pb could be exhausted from vehicle exhausts as well. Furthermore, spatial distributions revealed nonpoint source pollution for the studied heavy metals. The obtained results help in the remediation techniques of contaminated soils such as dilution with decontaminated soil or extraction or separation of heavy metals.


Sign in / Sign up

Export Citation Format

Share Document