Uncertainty Assessment of Production Performance for a Heavy Oil Offshore Field by using the Experimental Design Technique

Author(s):  
J.W. Vanegas P. ◽  
J.C. Cunha ◽  
L.B. Cunha
2008 ◽  
Author(s):  
Loris Tealdi ◽  
Maurizio Rampoldi ◽  
Henri Malonga ◽  
Leone Riccobon ◽  
Fabrice Okassa ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
K. Zobeidi ◽  
M. Ganjeh-Ghazvini ◽  
V. Hematfar

Summary During the years 2017–2020, when Iran faced restrictions on the sale of oil and gas condensate and due to the need for domestic consumption and gas sales commitments, it was inevitable to produce gas at full capacity. This coercion has led to significant production of gas condensates. Some of these condensates were sold, some were converted into products such as gasoline in domestic refineries, and some of these condensates needed to be stored, but the storage capacity was limited. For the purpose of underground condensate storage, a heavy oil reservoir was selected based on some technical and operational criteria. A feasibility study was conducted to evaluate the potential risks of condensate injection into the reservoir. The results of tests on asphaltene precipitation, as the most important risk, indicated no severe precipitation would occur even if high concentration of condensate mixed with the reservoir heavy oil. The recovery of condensate and the production performance of the reservoir were simulated in three different injection-production scenarios. The results showed a positive effect of condensate injection on production rate of the reservoir. Moreover, satisfactory volume of condensate could be recovered in a reasonable period of time.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhijie Wei ◽  
Xiaodong Kang ◽  
Yuyang Liu ◽  
Hanxu Yang

Injection conformance reversion commonly observed during polymer flooding in offshore heterogeneous heavy-oil reservoirs weakens the volumetric sweep of polymer solution and compromises its EOR results. To investigate its mechanisms and impact factors, one mathematical model to predicate injection conformance behavior is constructed for heterogeneous reservoirs based on the Buckley-Leverett function. The different suction capability of each layer to polymer solution results in distinct change law of the flow resistance force, which in turn reacts upon the suction capability and creates dynamic redistribution of injection between layers. Conformance reversion takes place when the variation ratio of flow resistance force of different layers tends to be the same. The peak value and scope of conformance reversion decrease and reversion timing is advanced as oil viscosity or permeability contrast increases, or polymer concentration or relative thickness of low permeable layer decreases, which compromises the ability of polymer flooding to improve the volumetric sweep and lower suction of the low permeable layer. The features of offshore polymer flooding tend to make the injection conformance V-type and create low-efficiency circulation of polymer in a high permeable layer more easily. These results can provide guidance to improve the production performance of polymer flooding in offshore heterogeneous heavy-oil reservoirs.


Author(s):  
А.Т. Zaripov ◽  
◽  
А.R. Razumov ◽  
Аnt.N. Beregovoy ◽  
N.А. Knyazeva ◽  
...  

2017 ◽  
Author(s):  
Xiaopeng Li ◽  
Suryansh Purwar ◽  
Sergio Sousa ◽  
Cesar Bravo ◽  
David Vasconcelos

Sign in / Sign up

Export Citation Format

Share Document