Numerical Calculation of the Pressure Drop and Saturation of Two-Phase Flow Through Porous Medium (Russian)

2020 ◽  
Author(s):  
Zhibek Akasheva ◽  
Bakhytzhan Assilbekov ◽  
Aziz Kudaikulov ◽  
Darezhat Bolysbek
2020 ◽  
Author(s):  
Zhibek Akasheva ◽  
Bakhytzhan Assilbekov ◽  
Aziz Kudaikulov ◽  
Darezhat Bolysbek

2007 ◽  
Author(s):  
Wenhong Liu ◽  
Liejin Guo ◽  
Ximin Zhang ◽  
Kai Lin ◽  
Long Yang ◽  
...  

2016 ◽  
Vol 94 ◽  
pp. 422-432 ◽  
Author(s):  
N. Chikhi ◽  
R. Clavier ◽  
J.-P. Laurent ◽  
F. Fichot ◽  
M. Quintard

Author(s):  
L. Wenhong ◽  
G. Liejin ◽  
Z. Ximin ◽  
L. Kai ◽  
Y. Long ◽  
...  

2019 ◽  
Vol 112 ◽  
pp. 13-26
Author(s):  
Sonja Weise ◽  
Sebastian Meinicke ◽  
Thomas Wetzel ◽  
Benjamin Dietrich

Author(s):  
N. K. Yamaleev ◽  
R. V. Mohan

The macroscopic flow during processing of composite structures by liquid composite molding is accompanied by the microscopic flow through individual fiber bundles. This concurrent microscopic flow occurs at length and time scales different than those of the macroscopic flow and influences the macroscopic flow behavior, impacting the void formation during composite manufacturing. A reduced-order model developed by the authors of this paper in [Proc. 2005 ASME Conf., IMECE2005-82436] for modeling the microscopic impregnation of individual fiber bundles is currently used to simulate the transient dynamics of the 1-D two-phase flow though a dual-scale porous medium during resin transfer molding (RTM). As has been show in our previous work [Inter. J. of Multiphase Flow, Vol. 32, pp. 1219–1233, 2006] the vapor-liquid phase transition and multidimensional effects of the gas entrapped inside fiber tows can play a significant role in the advancement of the macroscopic resin front and the formation of voids, thus indicating the need to account for these phenomena in the simulation of liquid composite molding processes. These effects are quantified by introducing a nonzero sink term into the right hand side of the mass conservation equation for the dual-scale porous medium, which couples the microscopic two-phase flow inside fiber bundles with the macro-flow through the perform. Two numerical methods, one of which is based on the moving coordinate system associated with the macroscopic resin front and the other one based on the fill factor technique on a fixed Eulerian coordinate system, are used to solve the resin flow through the preform. The comparative analysis of the fill factor and moving front methods as well as the results demonstrating the effect of phase transition and impregnation of individual fiber bundles on macroscopic flow parameters during RTM are presented.


Author(s):  
Milka Hebi Nava Rivera ◽  
Daisuke Ito ◽  
Yasushi Saito ◽  
Mitsuhiro Aoyagi ◽  
Kenji Kamiyama ◽  
...  

Two-phase flow through porous media should be well understood to develop a severe accident analysis code not only for light water reactor but also sodium cooled fast reactor (SFR). When a core disruptive accident occurs in SFR, the fuel inside the core may become melted and interacts with the coolant. As a result, gas-liquid two-phase flow will be formed in the debris bed, which may have porous nature depending on the cooling process. Thus, as first step, present work focuses on the characteristics of pressure drop in single- and two-phase flows in different porous media conditions (porous size, liquid and gas flow velocity). In addition, in order to construct an experimental database, the measured pressure drop under different conditions was compared with existing correlations.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Manmatha K. Roul ◽  
Sukanta K. Dash

Two-phase flow pressure drops through thin and thick orifices have been numerically investigated with air–water flows in horizontal pipes. Two-phase computational fluid dynamics (CFD) calculations, using the Eulerian–Eulerian model have been employed to calculate the pressure drop through orifices. The operating conditions cover the gas and liquid superficial velocity ranges Vsg = 0.3–4 m/s and Vsl = 0.6–2 m/s, respectively. The local pressure drops have been obtained by means of extrapolation from the computed upstream and downstream linearized pressure profiles to the orifice section. Simulations for the single-phase flow of water have been carried out for local liquid Reynolds number (Re based on orifice diameter) ranging from 3 × 104 to 2 × 105 to obtain the discharge coefficient and the two-phase local multiplier, which when multiplied with the pressure drop of water (for same mass flow of water and two phase mixture) will reproduce the pressure drop for two phase flow through the orifice. The effect of orifice geometry on two-phase pressure losses has been considered by selecting two pipes of 60 mm and 40 mm inner diameter and eight different orifice plates (for each pipe) with two area ratios (σ = 0.73 and σ = 0.54) and four different thicknesses (s/d = 0.025–0.59). The results obtained from numerical simulations are validated against experimental data from the literature and are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document