Reduced-Order Modeling for Multiphase Flow Using a Physics-Based Deep Learning

2021 ◽  
Author(s):  
Thamer Alsulaimani ◽  
Mary Wheeler

Abstract Reservoir simulation is the most widely used tool for oil and gas production forecasting and reservoir management. Solving a large-scale system of nonlinear differential equations every timestep can be computationally expensive. In this work, we present a two-phase physics-constrained deep-learning reduced-order model as a surrogate model for subsurface flow production forecast. The implemented deep learning model is a physics-guided encoder-decoder, constructed based on the Embed-to-Control (E2C) framework. In our implementation, the E2C works in a way analogous to Proper Orthogonal Decomposition combined with Discrete Empirical Interpolation Method (POD-DEIM) or Trajectory Piece-Wise Linearization approach (POD-TPWL). The E2C-Reduced-order model (ROM) involves projecting the system from a high-dimensional space into a low-dimensional subspace using the encoder-decoder, approximating the progression of the system from one timestep to the next using a linear transition model, and finally projecting the system back to high-dimensional space using the encoder-decoder. To guarantee mass conservation, we adopt the Finite Elements Mixed Formulation in the neural network's loss function combined with the original data-based loss function. Training simulations are generated using a full-physics reservoir simulator (IPARS). High-fidelity pressure, velocity, and saturation solution snapshot at constant time intervals are taken as training input to the neural network. After training, the model is tested over large variations of well control settings. Accurate pressure and saturation solutions are predicted along with the injection and production well quantities using the proposed approach. Errors in the predicted quantities of interest are reduced with the increase in the number of training simulations used. Although it required a large number of training simulations for the offline (training) step, the model achieved a significant speedup in the online stage compared to the full physics model. Considering the overall computational cost, this ROM model is proper for cases when a large number of simulations are required like in the case of production optimization and uncertainty assessments. The proposed approach shows the capability of the deep-learning reduced-order model to accurately predict multiphase flow behavior such as well quantities, and global pressure and saturation fields. The model honors mass conservation and the underlying physics laws, which many existing approaches don't take into direct consideration.

Author(s):  
Saurabh Biswas ◽  
Anindya Chatterjee

Hysteresis in material behaviour includes both signum nonlinearities as well as high dimensionality. Available models for component-level hysteretic behaviour are empirical. Here, we derive a low-order model for rate-independent hysteresis from a high-dimensional massless frictional system. The original system, being given in terms of signs of velocities, is first solved incrementally using a linear complementarity problem formulation. From this numerical solution, to develop a reduced-order model, basis vectors are chosen using the singular value decomposition. The slip direction in generalized coordinates is identified as the minimizer of a dissipation-related function. That function includes terms for frictional dissipation through signum nonlinearities at many friction sites. Luckily, it allows a convenient analytical approximation. Upon solution of the approximated minimization problem, the slip direction is found. A final evolution equation for a few states is then obtained that gives a good match with the full solution. The model obtained here may lead to new insights into hysteresis as well as better empirical modelling thereof.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhe Liu ◽  
Fangli Ning ◽  
Hui Ding ◽  
Qingbo Zhai ◽  
Juan Wei

The reduced-order model can accurately and efficiently predict unsteady problems in many aerospace engineering applications. The traditional reduced-order model based on proper orthogonal decomposition (POD) and Galerkin projection has poor robustness and large error in predicting complex problems. In this paper, a reduced-order model combining POD and deep learning is proposed to predict cavity flow oscillations under different flow conditions. Firstly, POD modes and corresponding coefficients are obtained by POD. Then, two deep learning frameworks, including multilayer perceptron (MLP) and long short-term memory (LSTM) neural networks, are used to predict the future POD coefficients, respectively. Finally, the cavity flow oscillations across multi-Mach numbers are predicted by the POD modes and the future coefficients. The results show that both of these frameworks can accurately predict cavity flow oscillations when the flow conditions change, and the time cost is reduced by order of magnitude. In addition, due to the performance of LSTM is better than that of MLP, its calculation speed is faster.


2017 ◽  
Vol 8 (1) ◽  
pp. 210-236 ◽  
Author(s):  
Giovanni Stabile ◽  
Saddam Hijazi ◽  
Andrea Mola ◽  
Stefano Lorenzi ◽  
Gianluigi Rozza

Abstract Vortex shedding around circular cylinders is a well known and studied phenomenon that appears in many engineering fields. A Reduced Order Model (ROM) of the incompressible ow around a circular cylinder is presented in this work. The ROM is built performing a Galerkin projection of the governing equations onto a lower dimensional space. The reduced basis space is generated using a Proper Orthogonal Decomposition (POD) approach. In particular the focus is into (i) the correct reproduction of the pres- sure field, that in case of the vortex shedding phenomenon, is of primary importance for the calculation of the drag and lift coefficients; (ii) the projection of the Governing equations (momentum equation and Poisson equation for pressure) performed onto different reduced basis space for velocity and pressure, respectively; (iii) all the relevant modifications necessary to adapt standard finite element POD-Galerkin methods to a finite volume framework. The accuracy of the reduced order model is assessed against full order results.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 863
Author(s):  
Neveen Ali Eshtewy ◽  
Lena Scholz

High dimensionality continues to be a challenge in computational systems biology. The kinetic models of many phenomena of interest are high-dimensional and complex, resulting in large computational effort in the simulation. Model order reduction (MOR) is a mathematical technique that is used to reduce the computational complexity of high-dimensional systems by approximation with lower dimensional systems, while retaining the important information and properties of the full order system. Proper orthogonal decomposition (POD) is a method based on Galerkin projection that can be used for reducing the model order. POD is considered an optimal linear approach since it obtains the minimum squared distance between the original model and its reduced representation. However, POD may represent a restriction for nonlinear systems. By applying the POD method for nonlinear systems, the complexity to solve the nonlinear term still remains that of the full order model. To overcome the complexity for nonlinear terms in the dynamical system, an approach called the discrete empirical interpolation method (DEIM) can be used. In this paper, we discuss model reduction by POD and DEIM to reduce the order of kinetic models of biological systems and illustrate the approaches on some examples. Additional computational costs for setting up the reduced order system pay off for large-scale systems. In general, a reduced model should not be expected to yield good approximations if different initial conditions are used from that used to produce the reduced order model. We used the POD method of a kinetic model with different initial conditions to compute the reduced model. This reduced order model is able to predict the full order model for a variety of different initial conditions.


AIAA Journal ◽  
2020 ◽  
Vol 58 (10) ◽  
pp. 4304-4321 ◽  
Author(s):  
R. Halder ◽  
M. Damodaran ◽  
B. C. Khoo

Author(s):  
Marcos A. Valdebenito ◽  
Héctor A. Jensen ◽  
Pengfei Wei ◽  
Michael Beer ◽  
André T. Beck

Abstract This contribution proposes a strategy for performing fuzzy analysis of linear static systems applying α-level optimization. In order to decrease numerical costs, full system analyses are replaced by a reduced order model that projects the equilibrium equations to a small-dimensional space. The basis associated with the reduced order model is constructed by means of a single analysis of the system plus a sensitivity analysis. This reduced basis is enriched as the α-level optimization strategy progresses in order to protect the quality of the approximations provided by the reduced order model. A numerical example shows that with the proposed strategy, it is possible to produce an accurate estimate of the membership function of the response of the system with a limited number of full system analyses.


Sign in / Sign up

Export Citation Format

Share Document