flow oscillations
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 4)

2021 ◽  
Vol 2103 (1) ◽  
pp. 012221
Author(s):  
D E Sinitsina ◽  
D K Zaitsev

Abstract This paper reflected preliminary results of physical modeling of pulsating flow in a model of abdominal aortic bifurcation with taking into account the physiological elasticity of the vessel walls. Elastic vessel models were made via molding from a silicone mixture based on Lasil-T4 silicone rubber. The auxiliary study was performed to assess the elastic properties of the silicone mixture and select a necessary composition. The experiment on the pulsating flow in the rigid and elastic models of the abdominal aortic bifurcation was carried out using a blood flow simulator with circulation of blood-emulating fluid. It was revealed that interaction between the elastic model and closed rigid circuit of the blood flow simulator resulted in generation of intense parasite flow oscillations and prevented from getting similar flow conditions for rigid and elastic models. A way to solve the problem is to include dampers with liquid in the hydraulic circuit of the blood flow simulator at the inlet and the outlets of the elastic model.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Zhe Liu ◽  
Fangli Ning ◽  
Hui Ding ◽  
Qingbo Zhai ◽  
Juan Wei

The reduced-order model can accurately and efficiently predict unsteady problems in many aerospace engineering applications. The traditional reduced-order model based on proper orthogonal decomposition (POD) and Galerkin projection has poor robustness and large error in predicting complex problems. In this paper, a reduced-order model combining POD and deep learning is proposed to predict cavity flow oscillations under different flow conditions. Firstly, POD modes and corresponding coefficients are obtained by POD. Then, two deep learning frameworks, including multilayer perceptron (MLP) and long short-term memory (LSTM) neural networks, are used to predict the future POD coefficients, respectively. Finally, the cavity flow oscillations across multi-Mach numbers are predicted by the POD modes and the future coefficients. The results show that both of these frameworks can accurately predict cavity flow oscillations when the flow conditions change, and the time cost is reduced by order of magnitude. In addition, due to the performance of LSTM is better than that of MLP, its calculation speed is faster.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252296
Author(s):  
Irina Mizeva ◽  
Elena Potapova ◽  
Viktor Dremin ◽  
Igor Kozlov ◽  
Andrey Dunaev

LSCI technique provides experimental data which can be considered in the context of spatial blood flow coherency. Analysis of vascular tone oscillations gives additional information to ensure a better understanding of the mechanisms affecting microvascular physiology. The oscillations with different frequencies are due to different physiological mechanisms. The reasons for the generation of peripheral blood flow oscillations in the 0.14–0.6 Hz frequency band are as follows: cardio-respiratory interactions, pressure variations in the venous part of the circulatory system, and the effect of the sympathetic nervous system on the vascular tone. Earlier, we described the spatial heterogeneity of around 0.3 Hz oscillations and this motivated us to continue the research to find the conditions for the occurrence of spatial phase synchronization. For this purpose, a number of physiological tests (controlled respiration, breath holder, and venous occlusion tests) which influence the blood flow oscillations of 0.14–0.6 Hz were considered, an appropriate measurement system and the required data processing algorithms were developed. At spontaneous respiration, the oscillations with frequencies around 0.3 Hz were stochastic, whereas all the performed tests induced an increase in spatial coherence. The protocols and methods proposed here can help to clarify whether the heterogeneity of respiratory-related blood flow oscillations exists on the skin surface.


Author(s):  
Varun Thangamani ◽  
Foo Ngai Kok

This study investigates the energy harvesting prospects of self-sustained flow oscillations emanating from grazing flow over a rectangular cavity by employing experimental and computational methods. Two cavity geometries with length-to-depth ratios of 2 and 3, exposed to an incoming flow of 30 m/s, were selected for the purpose. The power spectral density of the baseline cavity flows showed the presence of high-amplitude peaks whose frequencies agreed to those estimated from Rossiter’s feedback model. For energy harvesting, a piezoelectric beam was placed perpendicular to the aft wall and its natural frequency tuned to match closely with the dominant frequencies of the cavity flow oscillations. From the experiments, an average and maximum instantaneous power of 21.11 and 284.18 µW was recorded for the cavity with L/ D = 2 whereas for the cavity with L/ D = 3 the corresponding values were 32.16 and 403.46 µW respectively. Time-frequency analysis showed the forcing of the beam at the cavity oscillation frequency and the substantial increase in the amplitude of beam vibrations when this frequency was close to the natural frequency of the beam.


Biorheology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Xiaotong Zhu ◽  
Keying Zhang ◽  
Li He ◽  
Fuyuan Liao ◽  
Yuanchun Ren ◽  
...  

BACKGROUND: Local vibration has been shown promise in improving skin blood flow and wound healing. However, the underlying mechanism of local vibration as a preconditioning intervention to alter plantar skin blood flow after walking is unclear. OBJECTIVE: The objective was to use wavelet analysis of skin blood flow oscillations to investigate the effect of preconditioning local vibration on plantar tissues after walking. METHODS: A double-blind, repeated measures design was tested in 10 healthy participants. The protocol included 10-min baseline, 10-min local vibrations (100Hz or sham), 10-min walking, and 10-min recovery periods. Skin blood flow was measured over the first metatarsal head of the right foot during the baseline and recovery periods. Wavelet amplitudes after walking were expressed as the ratio of the wavelet amplitude before walking. RESULTS: The results showed the significant difference in the metabolic (vibration 10.06 ± 1.97, sham 5.78 ± 1.53, p < 0.01) and neurogenic (vibration 7.45 ± 1.54, sham 4.78 ± 1.22, p < 0.01) controls. There were no significant differences in the myogenic, respiratory and cardiac controls between the preconditioning local vibration and sham conditions. CONCLUSIONS: Our results showed that preconditioning local vibration altered the normalization rates of plantar skin blood flow after walking by stimulating the metabolic and neurogenic controls.


2021 ◽  
Vol 130 (4) ◽  
pp. 1064-1071
Author(s):  
Gregory S. Roy ◽  
Nirav Daphtary ◽  
Olivia Johnson ◽  
Anne E. Dixon ◽  
David A. Kaminsky ◽  
...  

The technique of oscillometry for measuring the mechanical input impedance of the respiratory system is gaining traction as a clinical diagnostic tool, but the portability of existing commercially available devices is limited by the size and weight of oscillator motors and power supplies. We show that impedance can be measured by oscillations in mouth pressure and flow generated by mucus-clearing devices that are powered by the subject’s own respiratory flow. This principle might thus be employed in lightweight ambulatory oscillometry devices.


Sign in / Sign up

Export Citation Format

Share Document