The Mixed Virtual Element Method for Grids with Curved Interfaces in Single-Phase Flow Problems

2021 ◽  
Author(s):  
Franco Dassi ◽  
Alessio Fumagalli ◽  
Davide Losapio ◽  
Stefano Scialò ◽  
Anna Scotti ◽  
...  

Abstract In many applications the accurate representation of the computational domain is a key factor to obtain reliable and effective numerical solutions. Curved interfaces, which might be internal, related to physical data, or portions of the physical boundary, are often met in real applications. However, they are often approximated leading to a geometrical error that might become dominant and deteriorate the quality of the results. Underground problems often involve the motion of fluids where the fundamental governing equation is the Darcy law. High quality velocity fields are of paramount importance for the successful subsequent coupling with other physical phenomena such as transport. The virtual element method, as solution scheme, is known to be applicable in problems whose discretizations requires cells of general shape, and the mixed formulation is here preferred to obtain accurate velocity fields. To overcome the issues associated to the complex geometries and, at the same time, retaining the quality of the solutions, we present here the virtual element method to solve the Darcy problem, in mixed form, in presence of curved interfaces in two and three dimensions. The numerical scheme is presented in detail explaining the discrete setting with a focus on the treatment of curved interfaces. Examples, inspired from industrial applications, are presented showing the validity of the proposed approach.

2019 ◽  
Vol 40 (2) ◽  
pp. 1544-1576 ◽  
Author(s):  
Verónica Anaya ◽  
Mostafa Bendahmane ◽  
David Mora ◽  
Mauricio Sepúlveda

AbstractWe present a virtual element method (VEM) for a nonlocal reaction–diffusion system of the cardiac electric field. For this system, we analyze an $H^1$-conforming discretization by means of VEM that can make use of general polygonal meshes. Under standard assumptions on the computational domain, we establish the convergence of the discrete solution by considering a series of a priori estimates and by using a general $L^p$ compactness criterion. Moreover, we obtain optimal order space-time error estimates in the $L^2$ norm. Finally, we report some numerical tests supporting the theoretical results.


2018 ◽  
Vol 28 (07) ◽  
pp. 1291-1336 ◽  
Author(s):  
Susanne C. Brenner ◽  
Li-Yeng Sung

We consider a model Poisson problem in [Formula: see text] ([Formula: see text]) and establish error estimates for virtual element methods on polygonal or polyhedral meshes that can contain small edges ([Formula: see text]) or small faces ([Formula: see text]). Our results extend the ones in [L. Beirão da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method, Math. Models Methods Appl. Sci. 27 (2017) 2557–2594] for the original two-dimensional virtual element method from [L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (2013) 199–214] to the version of the virtual element method in [B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (2013) 376–391] that can also be applied to problems in three dimensions.


2015 ◽  
Vol 25 (08) ◽  
pp. 1421-1445 ◽  
Author(s):  
David Mora ◽  
Gonzalo Rivera ◽  
Rodolfo Rodríguez

The aim of this paper is to develop a virtual element method for the two-dimensional Steklov eigenvalue problem. We propose a discretization by means of the virtual elements presented in [L. Beirão da Veiga et al., Basic principles of virtual element methods, Math. Models Methods Appl. Sci.23 (2013) 199–214]. Under standard assumptions on the computational domain, we establish that the resulting scheme provides a correct approximation of the spectrum and prove optimal-order error estimates for the eigenfunctions and a double order for the eigenvalues. We also prove higher-order error estimates for the computation of the eigensolutions on the boundary, which in some Steklov problems (computing sloshing modes, for instance) provides the quantity of main interest (the free surface of the liquid). Finally, we report some numerical tests supporting the theoretical results.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Qingguang Guan

<p style='text-indent:20px;'>In this paper, we employ the techniques developed for second order operators to obtain the new estimates of Virtual Element Method for fourth order operators. The analysis bases on elements with proper shape regularity. Estimates for projection and interpolation operators are derived. Also, the biharmonic problem is solved by Virtual Element Method, optimal error estimates were obtained. Our choice of the discrete form for the right hand side function relaxes the regularity requirement in previous work and the error estimates between exact solutions and the computable numerical solutions were proved.</p>


2018 ◽  
Vol 52 (4) ◽  
pp. 1437-1456 ◽  
Author(s):  
David Mora ◽  
Gonzalo Rivera ◽  
Iván Velásquez

The aim of this paper is to develop a virtual element method (VEM) for the vibration problem of thin plates on polygonal meshes. We consider a variational formulation relying only on the transverse displacement of the plate and propose anH2(Ω) conforming discretization by means of the VEM which is simple in terms of degrees of freedom and coding aspects. Under standard assumptions on the computational domain, we establish that the resulting scheme provides a correct approximation of the spectrum and prove optimal order error estimates for the eigenfunctions and a double order for the eigenvalues. Finally, we report several numerical experiments illustrating the behaviour of the proposed scheme and confirming our theoretical results on different families of meshes. Additional examples of cases not covered by our theory are also presented.


CALCOLO ◽  
2021 ◽  
Vol 58 (3) ◽  
Author(s):  
Elena Bachini ◽  
Gianmarco Manzini ◽  
Mario Putti

AbstractWe develop a geometrically intrinsic formulation of the arbitrary-order Virtual Element Method (VEM) on polygonal cells for the numerical solution of elliptic surface partial differential equations (PDEs). The PDE is first written in covariant form using an appropriate local reference system. The knowledge of the local parametrization allows us to consider the two-dimensional VEM scheme, without any explicit approximation of the surface geometry. The theoretical properties of the classical VEM are extended to our framework by taking into consideration the highly anisotropic character of the final discretization. These properties are extensively tested on triangular and polygonal meshes using a manufactured solution. The limitations of the scheme are verified as functions of the regularity of the surface and its approximation.


2018 ◽  
Vol 77 (3) ◽  
pp. 1874-1908 ◽  
Author(s):  
Lorenzo Mascotto ◽  
Ilaria Perugia ◽  
Alexander Pichler

2021 ◽  
Vol 381 ◽  
pp. 113815
Author(s):  
S. Naranjo Alvarez ◽  
V. Bokil ◽  
V. Gyrya ◽  
G. Manzini

Sign in / Sign up

Export Citation Format

Share Document