Experimental and Modeling Studies on Pressure Gradient Prediction for Horizontal Gas Wells Based on Dimensionless Number Analysis

2021 ◽  
Author(s):  
Chengcheng Luo ◽  
Ning Wu ◽  
Sha Dong ◽  
Yonghui Liu ◽  
Changqing Ye ◽  
...  

Abstract Accurate prediction of pressure gradient in gas wells is the theoretical basis of gas well performance analysis, production optimization and deliquification technologies design. Experiment is the best access to characterize the flow behavior of gas wells. For low-pressure experimental investigation and gas wells, the most difference is the pressure (gas density), which could lead to totally different flow behavior. Dimensionless numbers are often used in the flow pattern maps to account for the flow similarities at different conditions, which means liquid holdup in the high pressure can be also predicted at low pressure conditions if we choose proper dimensionless numbers for pressure scaling up. However, no studies have focused on this point before. Besides, gas wells have high GLR, most empirical models were intended to developed for oil wells, which have greater weight in low GLR, decreasing the accuracy in gas wells. In order to predict the pressure gradient in horizontal gas wells, an experimental investigation of gas-water flow has been conducted. The experimental test matrix was designed to cover all the flow patterns. The experiment was conducted in a 5-m long pipe. The liquid holdup and pressure gradient were measured. Subsequently, the effect of gas velocity, liquid velocity, pipe diameter, and inclined angle on liquid holdup was analyzed. Then the dimensionless numbers proposed in the literature have been investigated and analyzed for pressure scaling up. Finally, a comprehensive model was established, which is developed for prediction pressure drop in gas wells. Some field and experimental data were provided to evaluate the new model. The results show that the Duns-Ros dimensionless number was not proper for pressure scaling up while the Hewitt-Robert Number performs best. Compared to widely used pressure gradient models with field data, the new model with Hewitt-Robert Number performed best, which shows that it is capable of dealing with prediction of pressure gradient in gas wells.

SPE Journal ◽  
2015 ◽  
Vol 20 (05) ◽  
pp. 1135-1144 ◽  
Author(s):  
Zhibin Wang ◽  
Huifang Bai ◽  
Suyang Zhu ◽  
Haiquan Zhong ◽  
Yingchuan Li

Summary Experimental studies show that liquid drop is deformed from initial spherical shape into ellipsoid shape in annular-mist flow, and the available critical Weber number WeCrit determined by the experiment can vary from 2.2 to 60 for low-viscosity liquid. On the basis of the force equilibrium and the critical-Weber-number-calculation method proposed by Azzopardi (1985), this paper develops a new model to predict minimum gas rate. This model introduces a parameter Ck,Wecrit that describes the effect of liquid-drop deformation and the maximum drop-size difference on the minimum gas rate. The effect of liquid-droplet coalescence is also considered indirectly. A function to predict drop-deformation magnitude for different critical Weber numbers is developed on the basis of energy conservation. The function-prediction results are in good agreement with experimental data from the literature and the predicted result from the drop deformation/breakup model, and the average absolute deviation is 6.1%. The Ck,Wecrit calculated by the new model increases with the increase of the pressure and liquid amount and it varies from 3.99 to 7.3, which means the critical gas velocity increases with the increase of the pressure and liquid amount. Numerous gas-well data were used for the validation of these entrained models, including data from 33 low-pressure gas wells (wellhead pressure: 0.26–3.41 MPa) from Coleman et al. (1991) and 91 high-pressure gas wells (wellhead pressure: 0.7–56 MPa) from Turner et al. (1969). The result shows the new entrained model has a good comprehensive performance in judging liquid-loading status in both high- and low-pressure gas wells.


2014 ◽  
Vol 7 (2) ◽  
pp. 977-985 ◽  
Author(s):  
David Heuwetter ◽  
William Glewen ◽  
David E. Foster ◽  
Roger Krieger ◽  
Michael Andrie

2003 ◽  
Vol 125 (5) ◽  
pp. 843-850 ◽  
Author(s):  
G. Roy ◽  
D. Vo-Ngoc ◽  
D. N. Nguyen ◽  
P. Florent

The application of pneumatic metrology to control dimensional accuracy on machined parts is based on the measurement of gas flow resistance through a restricted section formed by a jet orifice placed at a small distance away from a machined surface. The backpressure, which is sensed and indicated by a pressure gauge, is calibrated to measure dimensional variations. It has been found that in some typical industrial applications, the nozzles are subject to fouling, e.g., dirt and oil deposits accumulate on their frontal areas, thus requiring more frequent calibration of the apparatus for reliable service. In this paper, a numerical and experimental analysis of the flow behavior in the region between an injection nozzle and a flat surface is presented. The analysis is based on the steady-state axisymmetric flow of an incompressible fluid. The governing equations, coupled with the appropriate boundary conditions, are solved using the SIMPLER algorithm. Results have shown that for the standard nozzle geometry used in industrial applications, an annular low-pressure separated flow area was found to exist near the frontal surface of the nozzle. The existence of this area is believed to be the cause of the nozzle fouling problem. A study of various alternate nozzle geometries has shown that this low-pressure recirculation area can be eliminated quite readily. Well-designed chamfered, rounded, and reduced frontal area nozzles have all reduced or eliminated the separated recirculation flow area. It has been noted, however, that rounded nozzles may adversely cause a reduction in apparatus sensitivity.


2018 ◽  
Vol 81 (1) ◽  
Author(s):  
Shiferaw Regassa Jufar ◽  
Tareq M Al-Shami ◽  
Ulugbek Djuraev ◽  
Berihun Mamo Negash ◽  
Mohammed Mahbubur Rahman

A numerical simulation of flow of oil blob through a capillary tube constriction is presented. The simulation was run in a 2D axisymmetric model. Water is injected at the inlet to mobilize oil blob placed near the capillary tube constriction. Transient flow images were used to understand the flow evolution process. Results from the study show that pulsed injection effectively assisted to squeeze out the oil blob through the capillary tube constriction with shorter time compared to continuous injection.  Pulsed injection reduced the time required for the first droplet to cross the capillary tube constriction by about 3 folds compared to continuous injection. In addition, the droplet that crossed the constriction is larger when the flow was pulsed. In both cases, there is a reverse flow in the opposite direction of the injection. However, the severity of the reverse flow is stronger in the case of continuous injection. Immediately downstream the constriction, there is an adverse pressure gradient zone during continuous injection which limits the mobility of droplet that crossed the constriction. However, in the case of pulsed injection, there is a favorable pressure gradient zone immediately downstream the constriction. This zone expedites mobility of droplets that cross the constriction by transporting them further downstream through suction effect. Apparently, pulsed injection eases off the adverse pressure gradient and allowed more volume of oil to pass through the constriction. Within about two periods of pulsation, 84% of original oil placed at the beginning crossed the constriction compared to only 35% in the case of continuous injection. Even though the same amount of water was injected in both cases, pulsed injection clearly altered the flow behavior. The observation from this study may be extended to more complex flows in order to tailor the method for certain specific applications, such as flow of residual oil through a reservoir.


Sign in / Sign up

Export Citation Format

Share Document