A New Condition Monitoring System Improves the Reliability of the RCD Element During the MPD Jobs

2021 ◽  
Author(s):  
Krzysztof Karol Machocki ◽  
Zahrah Marhoon ◽  
Amjad Shaarawi ◽  
Ossama Sehsah ◽  
Tom Dixon ◽  
...  

Abstract Managed pressure drilling (MPD) is a technology that allows for precise wellbore pressure control, especially in formations of uncertain geomechanical properties (in specific: Fracture pressure and pore pressure gradients). The rotating control device (RCD) is the backbone to the MPD equipment. A new condition monitoring system was developed to improve the reliability of the RCD elements and to eliminate its catastrophic failures during MPD jobs. The new method to increase the reliability of an RCD is based on understanding and quantifying the factors affecting the lifetime of the RCD components. The condition monitoring system was designed to be attached onto the RCD and collect data from an array of sensors during the MPD jobs. Sensors are measuring: vibrations, acoustic emissions, rotation, pipe movement, temperatures and contamination level in the coolant fluid. System is capable to display the measurements in the real time to the operator, giving early warnings to take actions in order to prevent catastrophic failures of the RCD during the job. Data is also recorded to allow further processing and analysis using ML and AI techniques. The authors will discuss in detail the background and rationale to the new technology, including a review of the condition monitoring system, its elements, and functionality. The system design and intended operation will be explained including, sensors and data collection points in the condition monitoring process. No catastrophic failures of the RCD were encountered when the RCD condition monitoring system was installed and running in the field up to date. The measurements collected from the array of sensors and presented in the real time to the MPD operators, allows to monitor changes in condition of the critical RCD elements. From the system design, sensor type, and frequency of data inputs, it was concluded that the quantification of some parameters affecting the lifetime of RCD could be successfully performed in post analysis, using advanced AI techniques. This condition monitoring system can optimize the MPD operations, making MPD jobs safer and reducing the Non Productive Time. The novelty of this condition monitoring system is in the approach of measuring and displaying critical values to the operator during the job and possibility to quantification of the factors affecting the RCD elements lifetime.

Author(s):  
Ting-Chi Yeh ◽  
Min-Chun Pan

When rotary machines are running, acousto-mechanical signals acquired from the machines are able to reveal their operation status and machine conditions. Mechanical systems under periodic loading due to rotary operation usually respond in measurements with a superposition of sinusoids whose frequencies are integer (or fractional integer) multiples of the reference shaft speed. In this study we built an online real-time machine condition monitoring system based on the adaptive angular-velocity Vold-Kalman filtering order tracking (AV2KF_OT) algorithm, which was implemented through a DSP chip module and a user interface coded by the LabVIEW®. This paper briefly introduces the theoretical derivation and numerical implementation of computation scheme. Experimental works justify the effectiveness of applying the developed online real-time condition monitoring system. They are the detection of startup on the fluid-induced instability, whirl, performed by using a journal-bearing rotor test rig.


2001 ◽  
Author(s):  
John Donelson ◽  
Wayne M. Zavis ◽  
S. K. (John) Punwani ◽  
Monique Ferguson Stewart ◽  
Mark C. Edwards

Abstract Science Applications International Corporation (SAIC) and Wilcoxon Research have developed a real-time on-board condition monitoring system for freight trains. The Office of Research and Development of the Federal Railroad Administration funded the development of the system. The system monitors bearings, wheels, trucks and brakes on freight trains in order to detect equipment defects and derailments. The objectives of the system are to improve railroad safety and operation efficiency through continuous monitoring of mechanical components on freight trains.


2010 ◽  
Vol 450 ◽  
pp. 259-262 ◽  
Author(s):  
Chao Ching Ho ◽  
Tzu Hsin Kuo ◽  
Tsung Ting Tsai

Designing a robust condition monitoring system for a machine tool spindle is an important task because the spindle has a significant effect on the processing quality. In this study, a solar-powered wireless sensor system is installed inside the spindle and is used to monitor the machine tool processing state in real time, thereby improving the processing quality. Accelerometer sensors are employed to estimate tool wear; these sensors monitor the vibration of the spindle. The vibration monitoring data of the high-speed spindle is wirelessly transmitted to an external information device in real time. As an alternative to sensors that employ wired power transmission, a solar energy transmission system has been developed to provide the required electric power to the sensor system. The experimental results show that the proposed system successfully measures the vibration frequency of the rotational machine tool spindle.


Sign in / Sign up

Export Citation Format

Share Document