A New Nonlinear Two-Point Flux Approximation Method for Solving the Anisotropic Diffusion Equation with Reduced Violations of the Discrete Maximum/Minimum Principle

SPE Journal ◽  
2021 ◽  
pp. 1-19
Author(s):  
Wenjuan Zhang ◽  
Mohammed Al Kobaisi

Summary A class of monotone cell-centered nonlinear finite-volume methods has been proposed in the past decade to solve the anisotropic diffusion equation. The nonlinear two-point flux approximation (TPFA) (NTPFA) method preserves the nonnegativity of the solution values but can violate the discrete maximum/minimum principle (DMP). To enforce DMP, the nonlinear multipoint flux approximation (NMPFA) method ought to be used. In this work, we propose a novel NTPFA method that can reduce the severity of DMP violations significantly compared with the standard NTPFA method. The new formulation uses conormal decomposition for the construction of the one-sided fluxes. To define the unique flux through a connection between two cells, we choose a convex combination of the two one-sided fluxes such that the absolute differences of the magnitudes of the two transmissibility terms associated with the two neighboring cells are minimized, thus bringing the discrete coefficient matrix closer to having the zero row-sum property. Numerical experiments are conducted to test the performance of the new NTPFA method. The results demonstrate that the new scheme has comparable convergence order for both the solution and the flux compared with the standard NTPFA method or the classical multi-point flux approximation (MPFA-O) method. Moreover, the new NTPFA formulation shows marked improvements over the standard NTPFA in terms of reducing DMP violations. However, depending on the specific problem configuration, our new NTPFA formulation can lead to a system of nonlinear equations that is more difficult to solve.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Liyuan Guo

On the basis of studying the basic theory of anisotropic diffusion equation, this paper focuses on the application of anisotropic diffusion equation in image recognition film production. In order to further improve the application performance of P-M (Perona-Malik) anisotropic diffusion model, an improved P-M anisotropic diffusion model is proposed in this paper, and its application in image ultrasonic image noise reduction is discussed. The experimental results show that the model can effectively suppress the speckle noise and preserve the edge features of the image. Based on the image recognition technology, an image frame testing system is designed and implemented. The method of image recognition diffusion equation is used to extract and recognize the multilayer feature points of the test object according to the design of artificial neural network. To a certain extent, it improves the accuracy of image recognition and the audience rating of film and television. Use visual features of the film and television play in similarity calculation for simple movement scene segmentation problem, at the same time, the camera to obtain information, use the lens frame vision measuring the change of motion of the camera, and use weighted diffusion equation and the visual similarity of lens similarity calculation and motion information, by considering the camera motion of image recognition, effectively solve the sports scene of oversegmentation problem such as fighting and chasing.


Author(s):  
Donatella Giuliani

This chapter presents a method to compute the skeletal curve of shapes extracted by images derived by the real world. This skeletonization approach has been proved effective when applied to recognize biological forms, regardless of their complexity. The coloured and grayscale images have been pre-processed and transformed in binary images, recurring to segmentation. Generally the resulting binary images contain bi-dimensional bounded shapes, not-simply connected. For edge extraction it has been performed a parametric active contour procedure with a generalized external force field. The force field has been evaluated through an anisotropic diffusion equation. It has been noticed that the field divergence satisfies an anisotropic diffusion equation as well. Moreover, the curves of positive divergence can be considered as propagating fronts that converge to a steady state, the skeleton of the extracted object. This methodology has also been tested on shapes with boundary perturbations and disconnections.


2015 ◽  
Vol 44 (9) ◽  
pp. 910002 ◽  
Author(s):  
周慧鑫 ZHOU Hui-xin ◽  
赵营 ZHAO Ying ◽  
秦翰林 QIN Han-lin ◽  
殷世民 YIN Shi-min ◽  
刘刚 LIU Gang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document