The Development of a Pressure Actuated Isolation Nozzle Assembly and its Application as Flow Control Device in Extended Reach Water-Alternating-Gas Pilot Wells

2021 ◽  
Author(s):  
Zhihua Wang ◽  
Aqib Qureshi ◽  
Tarik A Abdelfattah ◽  
Joshua R Snitkoff

Abstract The re-development of a giant offshore field in the United Arab Emirates (UAE) consists predominantly of four artificial islands requiring in most cases extremely long horizontal laterals to reach the reservoir targets. Earlier SPE technical papers (1,2) have introduced the development, testing, qualification, and deployment of the plugged liner technology using the dissolvable plugged nozzles (DPNs). The use of DPN plugged liner technology has resulted in CAPEX savings and enhanced production performance. The benefits of DPN technology are its simplicity along with its cost effectiveness. However, the dissolvable material has some limitations, such as pressure rating and dissolution time, which are fluid chemistry dependent. To overcome these limits, a new Pressure Actuated Isolation Nozzle Assembly (PAINA) was developed as an alternative to the plugged liner tool for applications where a higher pressure rating is required, as well as on demand opening. Furthermore, the new PAINA also functions as a flow control device during injection and production, enhancing acid jetting effects during bullhead stimulation and reducing brine losses during liner installation. Liners with PAINAs can be run to TD similar to blank pipe: fluids can be circulated through the inside of the liner without the need for a wash pipe. Once on bottom, non-aqueous drilling fluid is displaced to brine without actuating the isolation mechanism. When the well is ready for production or injection, pressure is applied and the isolation mechanism is activated to establish communication between well and reservoir. These tools were successfully run as flow control devices in water-alternating-gas (WAG) pilot wells. The planning and execution of the initial application will be discussed, along with the tool development, qualification testing, and lessons learned. The key advantage of this technology is in extending plugged liner applications to cases where other pressure-operated tools are included as part of the liner lower completion. Pressure can be applied to the well multiple times without activating the isolation mechanism as long as the applied pressure is below the actuation pressure.

1980 ◽  
Vol 67 (4) ◽  
pp. 1413-1413
Author(s):  
George J. Kay ◽  
Alan Keskimen

2021 ◽  
Author(s):  
Zhihua Wang ◽  
Daniel Newton ◽  
Aqib Qureshi ◽  
Yoshito Uchiyama ◽  
Georgina Corona ◽  
...  

Abstract This Extended Reach Drilling (ERD) field re-development of a giant offshore field in the United Arab Emirates (UAE) requires in most cases extremely long laterals to reach the defined reservoir targets. However, certain areas of the field show permeability and / or pressure variations along the horizontal laterals. This heterogeneity requires an inflow control device (ICD) lower completion liner to deliver the required well performance that will adequately produce and sweep the reservoir. The ICD lower completion along with the extremely long laterals means significant time is spent switching the well from reservoir drilling fluid (RDF) non-aqueous fluid (NAF) to an aqueous completion brine. To reduce the amount of rig time spent on the displacement portion of the completion phase, an innovative technology was developed to enable the ICDs to be run in hole in a closed position and enable circulating through the end of the liner. The technology uses a dissolvable material, which is installed in the ICD to temporarily plug it. The dissolvable material is inert to the RDF NAF while the ICDs are run into hole, and then dissolves in brine after the well is displaced from RDF NAF to completion brine, changing the ICDs from closed to an open position. The ability to circulate through the end of the liner, with the support of the plugged ICDs, when the lower completion is deployed and at total depth (TD), enables switching the well from RDF NAF drilling fluid to an aqueous completion brine without the associated rig time of the original displacement method. The technique eliminates the use of a dedicated inner displacement string and allows for the displacement to be performed with the liner running string, saving 4-5 days per well. An added bonus is that the unique design allowed for this feature to be retrofitted to existing standard ICDs providing improved inventory control. In this paper the authors will demonstrate the technology and system developed to perform this operation, as well as the qualification testing, field installations, and lessons learned that were required to take this solution from concept to successful performance improvement initiative.


Author(s):  
Asad Asghar ◽  
Satpreet Sidhu ◽  
William D. E. Allan ◽  
Grant Ingram ◽  
Tom M. Hickling ◽  
...  

S-Ducts have wide application on air vehicles with embedded engines. The complex geometry is known to lead to separation downstream of curved profiles. This paper reports the influences on that flow of passive flow control geometries. In these experiments, stream-wise tubercles were applied in an effort to improve the internal performance of S-duct diffusers, parameters including pressure recovery, distortion and swirl. The test articles were tested with the high subsonic (Ma = 0.8) flow and were manufactured using 3D printing. Stream-wise static pressure and exit-plane total pressure were measured in a test rig using surface pressure taps and a 5-probe rotating rake, respectively; the baseline and variant S-ducts were simulated through computational fluid dynamics. The experiments showed that some subtle improvements to the S-Duct distortion could be achieved through careful selection of tubercle geometry. Generally, the recovered flow downstream of the inner radius of the second bend of the S-duct deteriorated, but overall pressure recovery improved. The simulations were useful in characterizing swirl, whereas experiments were not so equipped. Adjustments to the numerical approaches resulted in reasonable agreement with the experiments.


Sign in / Sign up

Export Citation Format

Share Document