pressure recovery
Recently Published Documents


TOTAL DOCUMENTS

570
(FIVE YEARS 94)

H-INDEX

32
(FIVE YEARS 2)

AIAA Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Armando R. Collazo Garcia ◽  
Phillip J. Ansell

2021 ◽  
Vol 68 (1) ◽  
Author(s):  
M. G. Khalafallah ◽  
H. S. Saleh ◽  
S. M. Ali ◽  
H. M. Abdelkhalek

AbstractThe aerodynamic losses in centrifugal compressors are mainly associated with the separated flow on the suction sides of impeller and diffuser vanes. The overall performance of such compressors can be improved by adding splitter vanes. The present work examines the effect of varying the geometrical location of the splitter vanes in the diffuser on the overall performance of a high-speed centrifugal compressor stage of a small gas turbine. To increase the pressure recovery through the diffuser, two radial sets of vanes are used. The first set of vanes (diffuser-1) is equipped with splitter vanes, placed mid-distance between the main vanes, while the vanes of the second set (diffuser-2) are conventional vanes. Flow through the compressor was simulated using the ANSYS 19 workbench program. Flow characteristics and compressor performance were obtained and analyzed for different circumferential positions of the splitting vanes relative to the main vanes of diffuser-1. The study covered seven positions of the splitter vanes including the original design of the diffuser where the splitter vanes were located at mid-distance between the main vanes. The analysis shows that, at design conditions, selecting the position of the splitter vanes to be nearer to the pressure side of the main vanes improves the stage performance. In the present study, locating the splitters at 33% of the angular distance between the main vanes leads to the best performance, and a significant improvement in the overall stage performance is recorded. The pressure recovery coefficient is raised by about 17%, the pressure ratio is increased by about 1.13%, and the stage efficiency is increased by about 2.01%, compared to the original splitter position. Performance improvement is related to the suppression of the flow separation and the more uniformity of flow. On the contrary, further moving the splitter closer to the main blade, the pressure recovery coefficient is decreased by about 2% than the position of 33% of the angular distance, but still higher than the original position by about 15% and a limited improvement in the compressor performance is noticed. Moving the splitter far out the main blade annihilates the static pressure recovery of the diffuser by about 2:7% compared with the original position. So, for the investigated compressor, the best position of the splitter blade in the circumferential direction, which provides the best stage performance in our parametric analysis, is not necessary to be at the mid-angular distance between the diffuser’s main blades, but it is achieved by moving the splitter to about 33% of the angular distance where the diminished loss from the suppressed flow separation is more prevailing and the instigated friction losses from splitter surfaces are less critical.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 316
Author(s):  
Chao Ning ◽  
Puyu Cao ◽  
Xuran Gong ◽  
Rui Zhu

The bowl diffuser is the main flow component in multistage submersible pumps; however, secondary flow fields can easily induce a separation vortex in the hub corner region of the bowl diffuser during normal operation. To explore the flow mechanism of the hub corner separation vortex and develop a method for suppressing hub corner separation vortices, the lean and sweep of the diffuser blade were optimized using computational fluid dynamics (CFD) simulations and central composite design. Diffuser efficiency, static pressure recovery coefficient, and non-uniformity were selected as the optimization objectives. Details of the internal flow were revealed and the collaborative response relationships between blade lean/sweep parameter equations and optimization objectives were established. The optimization results show that a greater pressure difference between the pressure surface and suction surface (PS–SS) at the inlet can offset transverse secondary flow, whereas a lower PS–SS pressure difference will cause a drop in low-energy fluid in the diffuser mid-section. The blade’s lean scheme suppresses the hub corner separation vortex, leading to an increase in pressure recovery and diffuser efficiency. Moreover, optimizing the sweep scheme can reduce the shroud–hub pressure difference at the inlet to offset spanwise secondary flow and enhance the hub–shroud pressure difference at the outlet, thus driving low-energy fluid further downstream. The sweep scheme suppresses the hub corner vortex, with a resulting drop in non-uniformity of 13.1%. Therefore, optimization of the diffuser blade’s lean and sweep can result in less low-energy fluid or drive it further away from hub, thereby suppressing the hub corner vortex and improving hydraulic performance. The outcomes of this work are relevant to the advanced design of bowl diffusers for multistage submersible pumps.


CFD Letters ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 52-68
Author(s):  
Teo Wen Yong ◽  
Normayati Nordin ◽  
Bukhari Manshoor ◽  
Zainal Ambri Abdul Karim ◽  
Shamsuri Mohamed Rasidi ◽  
...  

Curve diffuser is frequently used in applications such as HVAC, wind- tunnel, gas turbine cycle, aircraft engine etc. as an adapter to join the conduits of different cross-sectional areas or an ejector to decelerate the flow and raise the static pressure before discharging to the atmosphere. The performance of the curve diffuser is greatly affected by the abrupt expansion and inflection introduced, particularly when a sharp 90o curve diffuser is configured with a high area ratio (AR). Therefore, the paper aims to numerically investigate the effect of the expansion direction of AR=1.2 to 4.0 curve diffuser on loss characteristic and flow rectification. 90o curve diffuser operated at inflow Reynolds Number, Rein=5.934 × 104 to 1.783 × 105 was considered. Results show that pressure recovery improves when the area ratio increases from 1.2 to 2.16 for both 2D expansion (z- direction) and 3D expansion (x- and z- direction). On the other hand, the increase of inflow Reynolds number causes the flow uniformity to drop regardless of the expansion directions. 3D expansion (x- and z- direction) curve diffuser with AR=2.16, operated at Rein=8.163 × 104, is opted as the most optimum, producing the best pressure recovery up to 0.380. Meanwhile, 2D expansion (z-direction) curve diffuser of AR=2.16, , operated at Rein= 5.934 × 104, is chosen to provide the best flow uniformity of 2.330 m/s. 2D expansion (x- direction) should be as best avoided as it provides the worst overall performance of 90o curve diffuser.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shuili Ren ◽  
Peiqing Liu

For turboprop engine, the S-shaped intake affects the engine performance and the propeller is not far in front of the inlet of the S-shaped intake, so the slipstream inevitably affects the flow field in the S-shaped intake and the engine performance. Here, an S-shaped intake with/without propeller is studied by solving Reynolds-averaged Navier-Stokes equation employed SST k-ω turbulence model. The results are presented as time-averaged results and transient results. By comparing the flow field in S-shaped intake with/without propeller, the transient results show that total pressure recovery coefficient and distortion coefficient on the AIP section vary periodically with time. The time-averaged results show that the influence of propeller slipstream on the performance of S-shaped intake is mainly circumferential interference and streamwise interference. Circumferential interference mainly affects the secondary flow in the S-shaped intake and then affects the airflow uniformity; the streamwise interference mainly affects the streamwise flow separation in the S-shaped intake and then affects the total pressure recovery. The total pressure recovery coefficient on the AIP section for the S-shaped intake with propeller is 1%-2.5% higher than that for S-shaped intake without propeller, and the total pressure distortion coefficient on the AIP section for the S-shaped intake with propeller is 1%-12% higher than that for the S-shaped intake without propeller. However, compared with the free stream flow velocity ( Ma = 0.527 ), the influence of the propeller slipstream belongs to the category of small disturbance, which is acceptable for engineering applications.


Author(s):  
Günther Krumpl ◽  
Ivan Ulč ◽  
Michaela Trebs ◽  
Pavla Kadlecová ◽  
Juri Hodisch ◽  
...  

Author(s):  
Omer Elsayed ◽  
Ashraf A. Omar ◽  
Ali Jeddi ◽  
Saad EL HESSNI ◽  
Fatima Zahra Hachimy

Road vehicles drag is a direct consequence of a  large wake area generated behind. This area is  created owing to the vehicle shape, which is  determined by the class, functional and aesthetic  of the vehicle. Aerodynamic  characteristics are a ramification and not the  reason for the vehicle architecture. To enhance  pressure recovery in the wake region, hence  reduce drag, three different passive flow control  techniques were applied to sport-utility-vehicle  (SUV). A three-dimensional SUV was designed in  CATIA, and a numerical flow simulation was  conducted using Ansys-Fluent to evaluate the  aerodynamic effectiveness of the proposed flow  control approaches. A closed rectangular flap as  an add-on device modifies the wake vortex  system topology, enhances vortex merging, and  increases base pressure which leads to a drag  reduction of 15.87%. The perforated roof surface  layer was used to delay flow separation. The  measured base pressure values indicate a  higher-pressure recovery, which globally  reflected in a drag reduction of 19.82%. Finally,  air guided through side rams was used as steady  blowing. A steady passive air jet introduced at the core of the longitudinal trailing  vortices leads to a confined wake area.  The net effects appear in a global increase in the  base pressure values and the pronounced drag  reduction of 22.67%. 


Author(s):  
Yuxuan Dong ◽  
Zhigang Li ◽  
Jun Li

Abstract The exhaust diffuser with different struts was numerically calculated by solving three-dimensional Reynolds-Averaged Navier-Stokes (RANS). The flow process and flow loss mechanism in the diffuser were analyzed, the influence of two different structures of tapered struts on the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls was explored, and the aerodynamic performance of the exhaust diffuser with tapered struts was compared with a conventional exhaust diffuser with linear struts. The results show that, compared with the conventional linear strut, under different inlet pre-swirls, two different tapered struts can both weaken the flow separation in the exhaust diffuser, thereby reducing the total pressure loss. When the inlet pre-swirl is greater than 0.35, the total pressure loss coefficient of the exhaust diffuser with structure-C tapered struts decreases by up to 0.07. The two types of tapered struts also change the flow structure at the exhaust diffuser outlet, which affects the uniformity of the outlet airflow, and then affect the static pressure recovery coefficient. Under different inlet pre-swirls, two types of tapered struts can be effective to increase the static pressure recovery coefficient of the exhaust diffuser, for the exhaust diffuser with structure-C tapered struts, the static pressure recovery coefficient can be increased by up to 0.065, relative increase of 20%. The research in this paper shows that the tapered structure can significantly improve the aerodynamic performance of the exhaust diffuser under different inlet pre-swirls.


2021 ◽  
pp. 35-39
Author(s):  
Олег Володимирович Жорник ◽  
Ігор Федорович Кравченко ◽  
Михайло Михайлович Мітрахович ◽  
Олеся Валеріїна Денисюк

The issues of substantiation of the most rational, based on adequacy, model of turbulent viscosity for mathematical modeling of the flow near the propfan and in the inlet of the turbine-propeller engine are considered. It was found that at present there is no universal turbulence model for determining the parameters of the boundary layer, energy loss in the flow, and laminar-turbulent transition. Analysis of the results of previous studies showed that there is a need to select and justify a turbulent viscosity model for each type of research object. The task of modeling the flow near the propfan and in the inlet device of the power plant was performed using the ANSYS CFX software product, which allows using various standard mathematical models and tools for modeling turbulent flow. The object of research is an annular axial inlet device, in front of which there is a coaxial propfan with two rows of propellers: the first row has eight blades, the second - six. 7 types of models of turbulent viscosity, which most fully describe the phenomena in the flow around the propfan and the inlet device, have been investigated: k-ωmodel; SSТ (shear stress transport) SST Transitional №1 Fully turbulence; SST Transitional №2 Specified Intermittency; SST Transitional №3 Gamma model; SST Transitional №4 Gamma theta model; SST Transitional №5 Intermittency. The results of mathematical modeling of the flow near the propfan and in the inlet device at the corresponding operating mode of the turbopropfan engine using the selected models of turbulent viscosity, the total pressure value in front of and behind the inlet device was obtained to determine the total pressure recovery coefficient in it and the value of the propfan thrust. The value of the recovery factor of the total pressure in the inlet device and the propfan thrust are compared with the flight test data of the prototype. An analysis of the comparison of the values of the total pressure recovery factor in the inlet device and the propfan thrust showed that the use of the SST Transitional №4 Gamma theta model allows obtaining the value of the total pressure recovery factor in the inlet device and the propfan thrust that is closest to the flight test results.


Author(s):  
Олег Володимирович Жорник ◽  
Ігор Федорович Кравченко ◽  
Михайло Михайлович Мітрахович

The article considers the method of improving the characteristics of the ring inlet device, taking into account the influence of the propeller of an aircraft power plant with a turboprop engine. It is shown that increasing the total pressure loss in the inlet device by 5% increases, approximately, the specific fuel consumption by 3% and reduces engine thrust by 6%, and uneven flow at the inlet to the engine is the cause of unstable compressor of the turboprop engine. It is proposed to improve the characteristics of the input device by modifying the shape of its shell and channel. Evaluation of the influence of the shape of the shell and the channel of the annular axial VP on its main aerodynamic characteristics, taking into account the non-uniformity of the flow on the fan in the calculated mode of operation of the SU is carried out by calculating the full pressure recovery factor. The object of the study is an annular axial input device in front of which is a coaxial fan turboprop fan. The process of modeling the influence of the shape of the shell and the channel on the recovery factor of total pressure, circular and radial non-uniformity of the flow through the input device is implemented in the software system of finite element analysis ANSYS CFX. Geometric models of coaxial screw fan, fairing and inlet device are built in ANSYS SpaceClaim and transferred using the built-in import function in ANSYS Workbench. Block-structured grid models of air propellers of the first and second rows of the fan in the amount of 1.9 million, fairing and inlet device, in the amount of 3.9 million, are built in the ANSYS TurboGrid environment. The standard Stern (Shear Stress Transport) Gamma Theta Transition was used to close the Navier-Stokes equation system. Based on the results of mathematical modeling of flow in coaxial fans and subsonic ring inlet device on the maximum cruising mode of the turboprop engine, the full pressure recovery factor is calculated and it is established that the most influential factor that increases its full pressure recovery factor.


Sign in / Sign up

Export Citation Format

Share Document