Geothermal Production from Existing Oil and Gas Wells: A Sustainable Repurposing Model

2021 ◽  
Author(s):  
Oscar Mauricio Molina ◽  
Camilo Mejia ◽  
Mayank Tyagi ◽  
Felipe Medellin ◽  
Hani Elshahawi ◽  
...  

Abstract The geothermal energy industry has never quite realized its true potential despite the seemingly magical promise of nonstop, 24/7 renewable energy sitting just below the surface of the Earth. In this paper, we discuss an integrated cloud-based workflow aimed at evaluating the cost-effectiveness of adopting geothermal production in low to medium enthalpy systems by either repurposing existing oil and gas wells or by co-producing thermal and fossil energy. The workflow introduces an automated and intrinsically secure decision-making process to convert mature oil and gas wells into geothermal wells, enabling both operational and financial assessment of the conversion process, whether partial or complete. The proposed workflow focuses on the reliability and transparency of fully automated technical processes for the geological, hydrodynamic, and mechanical configuration of the production system to ensure the financial success of the conversion project, in terms of heat production potential and cost of development. The decision-making portion of the workflow comprises the technical, social, environmental factors driving the return on investment for the total or partial conversion of wells to geothermal production. These components are evaluated using artificial intelligence (AI) algorithms that reduce bias in the decision-making process. The automated workflow involves assessment of the following: Heat Potential: A data-driven model to determine the geothermal heat potential using geological conditions from basin modeling and data from offset wells.Flow Modeling: An ultra-fast, physics-based modeling approach to determine pressure and temperature changes along wellbores to model fluid flow potential, thermal flux, and injection operations.Mechanical Integrity: Casing and completions integrity and configuration are embedded in the process for flow rates modeling.Environmental, Social, and Governance (ESG): A decision modeling framework is setup to ensure the transparent validation of the technical components and ESG factors, including potential for water pollution, carbon emissions, and social factors such as induced seismicity and ambient noise levels The assurance of key ESG metrics will ensure a viable and sustainable transition into a globally available low-carbon source of energy such as geothermal. Our novel cloud- based automated decision-making environment incorporates a blockchain framework to ensure transparency of technical-related processes and tasks, driving the financial success of the conversion project. Ultimately, our automated workflow is designed to encourage and support the widespread adoption of low-carbon energy in the oil and gas industry.

2021 ◽  
Author(s):  
Chao Han ◽  
Zhichuan Guan ◽  
Yuqiang Xu ◽  
Huaigang Hu ◽  
Desong Wu

Abstract Blowout is one of the most serious accidents in the drilling process of hydrogen sulfide (H2S) oil and gas wells, often accompanied by the leakage of H2S and other toxic gases, which easily causes casualties and huge economic and environmental losses. Therefore, this article uses DEMATEL and ISM hybrid algorithms to establish a blowout accident-causing network model for oil and gas wells with H2S content, thus strengthening the risk management. In this model, firstly, the general causative factors of blowout accidents are extracted by accident statistics. Secondly, expert knowledge is adopted to determine the correlation matrix among factors. Thirdly, based on the DEMATEL algorithm, the degree of the relationship among the factors is analyzed. The importance degree (centrality) of each factor and its status as well as role (causality) in the accident-causing system are given. Finally, the ISM algorithm is used to classify the factors and establish an accident-causing network diagram with hierarchical relationship. The proposed model has been applied in a gas field containing H2S in East Sichuan, China. The results show that causative factors of blowout accidents can be divided into cause group and effect group according to the influence relationship among them. The cause group implies the meaning of the causative factors, and the effect group denotes the meaning of the causative factors. Hence, it would be necessary to control and pay great attention to the cause group factors beforehand. The key causative factors of blowout accidents are geological exploration technology, safety monitoring facilities and on-site safety culture, which belong to the cause group and are at the basic level of the accident-causing network diagram. This model has provided effective decision-making guidance for HSE work in gas field and reduced the incidence of blowout accidents. This model uses a combination of qualitative and quantitative methods to analyze the causes of blowout accidents, not only considering the relationships between factors and accidents, but also considering the relationships between factors and factors. As a result, it provides decision-making basis for the prevention and control of blowout accidents in H2S oil and gas wells.


2021 ◽  
Author(s):  
Abdulrahman Aljedaani ◽  
Mohammed AlOtaibi ◽  
Subhash Ayirala ◽  
Ali Al-Yousef

Abstract Many challenges and limitations are experienced while treating the produced water in oil fields, due to large volumes of water produced together with oil. In this paper, we propose a new method to treat produced water, by integrating humidification and de-humidification desalination (HDH) unit with waste heat, extracted from abandoned oil and gas wells. This solution is based on circulating the produced water through abandoned wells (both vertical and horizontal wells) and heat them up to 60-80°C so that the heated water can be directly used as hot feed water into the HDH unit. This eliminates either electricity or power requirements from an external source thereby significantly lowering the energy requirements. The direct use of hot produced water at the desired temperature range allows for better performance of the HDH desalination unit, while reducing the operating cost, besides minimizing CO2 emissions to the environment. The use of heat extracted from abandoned oil and gas wells in the form of geothermal energy enables the utilization of waste heat associated with existing wells, which is already available in most of the oil fields. The proposed method therefore provides a sustainable renewable energy solution for produced water desalination using HDH processes.


2018 ◽  
Author(s):  
Kenyon Gowing ◽  
◽  
Hunter Vickers ◽  
Jason A. Patton ◽  
Michael G. Davis

Sign in / Sign up

Export Citation Format

Share Document