Carapaces of the Dnieper-Donets Basin as a New Exploration Target

2021 ◽  
Author(s):  
Tetiana Petrovska ◽  
Oleksandr Petrovskyy ◽  
Oksana Tsihovska ◽  
Andrii Trachuk

Abstract New geological structures - displaced blocks of salt diapirs’ overburden - were identified in the axial part of the Dnieper-Donets basin (DDB) beside one of the largest salt domes due to modern high-precision gravity and magnetic surveys and their joint 3D inversion with seismic and well log data. Superposition of gravity lineaments and wells penetrating Middle and Lower Carboniferous below Permian and Upper Carboniferous sediments in proximity to salt allowed to propose halokinetic model salt overburden displacement, assuming Upper Carboniferous reactivation. Analogy with rafts and carapaces of the Gulf of Mexico is considered in terms of magnitude of salt- induced deformations. Density of Carboniferous rocks within the displaced flaps evidence a high probability of hydrocarbon saturation. Possible traps include uplifted parts of the overturned flaps, abutting Upper Carboniferous reservoirs, and underlying Carboniferous sequence. Play elements are analyzed using analogues from the Dnieper-Donets basin and the Gulf of Mexico. Hydrocarbon reserves of the overturned flaps within the study area are estimated to exceed Q50 (P50) = 150 million cubic meters of oil equivalent.

2021 ◽  
Author(s):  
Dmitry Mikhailovich Lazutkin ◽  
Oleg Vladimirovich Bukov ◽  
Denis Vagizovich Kashapov ◽  
Albina Viktorovna Drobot ◽  
Maria Alexandrovna Stepanova ◽  
...  

Abstract New geological structures – displaced blocks of salt diapirs’ overburden – were identified in the axial part of the Dnieper-Donets basin (DDB) beside one of the largest salt domes due to modern high-precision gravity and magnetic surveys and their joint 3D inversion with seismic and well log data. Superposition of gravity lineaments and wells penetrating Middle and Lower Carboniferous below Permian and Upper Carboniferous sediments in proximity to salt allowed to propose halokinetic model salt overburden displacement, assuming Upper Carboniferous reactivation. Analogy with rafts and carapaces of the Gulf of Mexico is considered in terms of magnitude of salt-induced deformations. Density of Carboniferous rocks within the displaced flaps evidence a high probability of hydrocarbon saturation. Possible traps include uplifted parts of the overturned flaps, abutting Upper Carboniferous reservoirs, and underlying Carboniferous sequence. Play elements are analyzed using analogues from the Dnieper-Donets basin and the Gulf of Mexico. Hydrocarbon reserves of the overturned flaps within the study area are estimated to exceed Q50 (Р50) = 150 million cubic meters of oil equivalent.


1989 ◽  
Vol 143 ◽  
pp. 21-45
Author(s):  
L Stemmerik ◽  
E Håkansson

A lithostratigraphic scheme is erected for the Lower Carboniferous to Triassic sediments of the Wandel Sea Basin, from Lockwood Ø in the west to Holm Land in the east. The scheme is based on the subdivision into the Upper Carboniferous - Lower Permian Mallemuk Mountain Group and the Upper Permian - Triassic Trolle Land Group. In addition the Upper Carboniferous Sortebakker Formation and the Upper Permian Kap Kraka Formation are defined. Three formations and four members are included in the Mallemuk Mountain Group. Lithostratigraphic units include: Kap Jungersen Formation (new) composed of interbedded limestones, sandstones and shales with minor gypsum - early Moscovian; Foldedal Formation composed of interbedded limestones and sandstones -late Moseovian to late Gzhelian; Kim Fjelde Formation composed of well bedded Iimestones - late Gzhelian to Kungurian. The Trolle Land Group includes three formations: Midnatfjeld Formation composed of dark shales, sandstones and limestones - Late Permian; Parish Bjerg Formation composed of a basal conglomeratic sandstone overlain by shales and sandstones - ?Early Triassic (Scythian); Dunken Formation composed of dark shales and sandstones - Triassic (Scythian-Anisian). The Sortebakker Formation (new) is composed of interbedded sandstones, shales and minor coal of floodplain origin. The age is Early Carboniferous. The Kap Kraka Formation (new) includes poorly known hematitic sandstones, conglomerates and shales of Late Permian age.


2020 ◽  
Vol 51 ◽  
pp. 1-11
Author(s):  
Kristýna Hrdličková ◽  
Altanbaatar Battushig ◽  
Pavel Hanžl ◽  
Alice Zavřelová ◽  
Jitka Míková

A new occurrence of Permian volcanic and volcaniclastic rocks in the Mongolian Altai south of the Main Mongolian Lineament was described between soums of Tugrug and Tseel in Gobi-Altai aimag. Studied vitrophyric pyroxene basalt lies in a layer of agglomerate and amygdaloidal lavas, which is a part of NE–SW trending subvertical sequence of varicolored siltstones and volcaniclastic rocks in the Tsengel River valley. This high-Mg basalt is enriched in large ion lithophile elements, Pb and Sr and depleted in Nb and Ta. LA-ICP-MS dating on 44 spots reveals several concordia clusters. The whole rock geochemistry of sample fits volcanic arc characteristic in the geotectonic discrimination diagrams. Dominant zircon data yield Upper Carboniferous and Permian magmatic ages 304.4 ± 2.3 and 288.6 ± 1.9 Ma. Two smaller clusters of Upper Devonian (376 ± 4.7 Ma) to Lower Carboniferous ages (351.9 ± 3.5 Ma) indicate probably contamination of ascending magmatic material. Youngest Triassic age found in three morphologically differing grains reflects probably lead loss. Described high-Mg basalt lava represents sub-aerial volcanism in volcanic arc environment developed over the N dipping subduction zone in the southwestern Mongolia in the time span from Uppermost Carboniferous to Permian during terminal stage of its activity.


2019 ◽  
Vol 7 (4) ◽  
pp. T857-T867 ◽  
Author(s):  
Mei Liu ◽  
Irina Filina ◽  
Paul Mann

We have investigated the crustal structure of a 400 km wide zone of thinned continental crust in the northeastern Gulf of Mexico (GOM) using gravity and magnetic modeling along two deeply penetrated seismic transects. Using this approach, we identify two zones of prominent, southward-dipping reflectors associated with 7–10 km thick, dense, and highly magnetic material. Previous workers have interpreted the zones as either coarse clastic redbeds of Mesozoic age that are tilted within half-grabens or seaward-dipping reflectors of magmatic origin. Both seismic reflection lines reveal a 10 km thick and 67 km wide northern zone of high density near the Florida coastline beneath the Apalachicola rift (AR). The southern zone of high density occurs 70 km to the south in the deepwater central GOM along the northern flank of the marginal rift, a 48 km wide, southeast-trending structure of inferred Late Jurassic age that is filled by 3 km of low-density and low-magnetic susceptibility sediments including complexly deformed salt deposits. We propose that these two subparallel rifts and their associated magmatic belts formed in the following sequence: (1) AR formed during Triassic-early Jurassic (210–163 Ma) phase 1 of diffuse continental stretching and was partially infilled on its northern edge by southward-dipping volcanic flows; and (2) the similarly southward-dipping southern magmatic zone formed adjacent to the marginal rift during the early phase 2 of late Jurassic (161–153 Ma) rifting of the GOM continental extension; this southern area of SDR formation immediately preceded the formation of the adjacent oceanic crust that separated the rift-related evaporates into the northern and southern GOM. Our integrated approach combining 2D seismic, gravity, and magnetic data sets results in a more confident delineation of these deep crustal features than from seismic data alone.


2001 ◽  
Vol 158 (4) ◽  
pp. 733-736 ◽  
Author(s):  
MANFRED MENNING ◽  
DIETER WEYER ◽  
IMMO WENDT ◽  
NICHOLAS J. RILEY ◽  
VLADIMIR I. DAVYDOV

2007 ◽  
Vol 41 (2) ◽  
pp. 12-22 ◽  
Author(s):  
Mark J. Kaiser ◽  
Richard Dodson

To explore, delineate, and produce hydrocarbon reserves, holes must be drilled into geologic formations. During the course of production, wells may become inactive because of diminished economic returns or technical problems, and be shut-in or temporarily abandoned. At the end of the life of every well, the well will be permanently plugged and abandoned (P&A). The P&A process is the first stage of a decommissioning program in which a site is returned to its original greenfield status in accord with regulatory requirements. The purpose of this paper is to describe the factors that influence P&A operations and summarize cost statistics from a sample of 118 jobs and 390 wells performed by Tetra Applied Technologies in the Gulf of Mexico from 2002-2003. Descriptive statistics are summarized and the impact of learning and scale economies are examined. Regression models are derived that estimate the cost of P&A activities based on job characteristics.


Paleobiology ◽  
1997 ◽  
Vol 23 (3) ◽  
pp. 301-325 ◽  
Author(s):  
W. Bruce Saunders ◽  
David M. Work

The ammonoid order Prolecanitida constitutes a relatively small (43 genera, ~250 species) but long-ranging lineage (Lower Carboniferous—Triassic, ~108 m.y.), which narrowly survived the P/Tr extinctions and provided the stock from which were derived all later Mesozoic ammonoids. Prolecanitids were a minority among Late Paleozoic ammonoids, which were dominated by the Goniatitida, and showed many features that set them far apart from their contemporaries, including (1) long-term, gradual changes in shell geometry (W-D-S); (2) the most strongly constrained morphospace of any Paleozoic ammonids examined to date; (3) an eight-fold increase in mean suture complexity (three times that of Pennsylvanian goniatitids); (4) high correlations between shell geometry, shell and septal thickness, and suture complexity; (5) short body chambers and, as a consequence, high aperture orientations; (6) indications that cameral liquid may have been used for buoyancy control; and (7) a genus longevity that averaged 14.7 m.y. compared with 5.7 m.y. in Upper Carboniferous goniatitids, and that appears to have been unrelated to suture complexity. Prolecanitids showed a pervasive tendency to increase suture complexity (in the clade as a whole as well as within subclades and in more than 90 percent of ancestor-descendant genera), thus arguing a case for a driven complexity trend. The uniqueness of the prolecanitids calls into question whether they and their Mesozoic descendants, ceratites and ammonites, were strictly analogous to Paleozoic goniatites.


Sign in / Sign up

Export Citation Format

Share Document