A Lithology Independent Through Casing Porosity and Water Saturation Model LIPS

1995 ◽  
Author(s):  
M.E. Oraby
Author(s):  
Wan Zairani Wan Bakar ◽  
Ismail Mohd Saaid ◽  
Mohd Riduan Ahmad ◽  
Zulhelmi Amir ◽  
Nur Shuhadah Japperi ◽  
...  

AbstractEstimation of water saturation, Sw, in shaly sandstone is an intricate process. The surface conduction of clay minerals adds up to the electrolyte conduction in the pore spaces, thus generating high formation conductivity that overshadows the hydrocarbon effect. In each resistivity-based water saturation model, the key parameter is formation factor, F, which is typically derived from Archie’s Law. Referring to a log–log plot between formation factor and porosity, cementation factor reflects the slope of the straight line abiding Archie’s Law. In the case of shaly sandstone, derivation based on Archie’s Law in combination with Waxman–Smits equation leads to higher cementation factor, m*. In the shaly parts of the reservoir, high m* is counterbalanced by clay conductivity. Nonetheless, high m* used in clean parts increases Sw estimation. In this study, the variable cementation factor equation is introduced into the standard correlation of Sw versus Resistivity Index, RI, to develop a water saturation model with shaly sandstone parameters. Data retrieved from two fields that yielded mean arctangent absolute percentage error (MAAPE) were analysed to determine the difference between calculated and measured data within the 0.01–0.15 range for variable cementation factor method. The conventional method yielded maximum MAAPE at 0.46.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. MR107-MR114 ◽  
Author(s):  
Chunhui Fang ◽  
Baozhi Pan ◽  
Yanghua Wang ◽  
Ying Rao ◽  
Yuhang Guo ◽  
...  

The acoustic property and the P-wave velocity of partially saturated rocks depend not only on the water saturation but also on the pore-scale fluid distribution. Here, we analyzed the pore-scale fluid distribution using nuclear magnetic resonance (NMR) [Formula: see text] spectra, which present the variation of porosity components associated with NMR transverse relaxation time [Formula: see text]. Based on the [Formula: see text] spectra, we classified the pore-scale fluid distribution during water imbibition and drainage into three models: a low-saturation model, a patchy distribution model, and a uniform distribution model. We specifically assigned the low-saturation model to deal with the acoustic property of the rocks at the imbibition starting stage and the drainage final stage because cement softening has a nonnegligible effect. We studied the acoustic properties of sandstone rocks with various pore-scale fluid distributions, at the imbibition process and the drainage process. We confirmed that, once the variations in water saturation and pore-scale fluid distribution are taken into account, the P-wave velocity prediction matches well with the laboratory measurement of samples, representing nearly tight sandstone rocks that are partially saturated with distilled water.


2012 ◽  
Author(s):  
Sezai Ucan ◽  
Luciano Monti ◽  
Dario Sergio Cersosimo Beccaria ◽  
Rodrigo Alejandro Claa ◽  
Aldo Montagna Bracea ◽  
...  

2020 ◽  
Vol 82 ◽  
pp. 103325
Author(s):  
Jalal A. Al-Sudani ◽  
Hawazin K. Mustafa ◽  
Dania F. Al-Sudani ◽  
Hassan Falih

Author(s):  
Ya Deng ◽  
Rui Guo ◽  
Zhongyuan Tian ◽  
Limin Zhao ◽  
Dandan Hu ◽  
...  

Combining both geological and petrophysical properties, a reliable rock typing scheme can be achieved. Two steps are included in rock typing. Step 1: rocks are classified into lithofacies based on core observations and thin sections; Step 2: lithofacies are further subdivided into rock types according to petrophysical properties such as MICP (Mercury Injection Capillary Pressure) and K-Phi relationships. By correlating rock types to electrofacies (clusters of log data), we can group the target formation into 12 rock types. Then it is possible to predict the distributions of rock types laterally and vertically using wireline logs. To avoid the defect of the classical J-function saturation model that includes permeability which is quite uncertain especially in carbonate rocks, a modified J-function was created and used in the paper. In this function, water saturation is simply expressed as a function of height above free water level for a specific rock type. Different water saturation models are established for different rock types. Finally, the water saturation model has been successfully constructed and verified to be appropriate.


Sign in / Sign up

Export Citation Format

Share Document