partially saturated
Recently Published Documents


TOTAL DOCUMENTS

1178
(FIVE YEARS 205)

H-INDEX

58
(FIVE YEARS 6)

Geotechnics ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Diana Cordeiro ◽  
Fausto Molina-Gómez ◽  
Cristiana Ferreira ◽  
Sara Rios ◽  
António Viana da Fonseca

Earthquake-induced liquefaction is one of the major causes of building damage as it decreases the strength and stiffness of soil. The liquefaction resistance of soils increases significantly as the degree of saturation decreases, making soil desaturation an effective measure for the mitigation of this phenomenon. This paper presents a comparative analysis of liquefaction resistance of an alluvial sand from Aveiro (Portugal) under fully and partially saturated conditions. For this purpose, an in situ characterisation based on CPTu and a laboratory series of cyclic triaxial tests were carried out. The cyclic triaxial tests were conducted under undrained conditions on remoulded specimens with different degrees of saturation, including the full saturation. On the other hand, the triaxial apparatus was instrumented with Hall-effect transducers to accurately measure the strains during all testing phases. In addition, it was equipped with piezoelectric transducers to measure seismic waves velocities, namely P-wave velocity, for evaluation of the saturation level of the specimen in parallel with the Skempton’s B parameter. Hence, relations between the B-value, and P-wave velocity and cyclic strength resistance are presented. The number of cycles to trigger liquefaction, considering the pore pressure build-up criterion, is presented for the different degrees of saturation. Results confirmed the increase in liquefaction resistance for lower degrees of saturation in this soil.


Tetrahedron ◽  
2021 ◽  
pp. 132605
Author(s):  
Oleksandr O. Grygorenko ◽  
Viktoriya S. Moskvina ◽  
Ihor Kleban ◽  
Oleksandr V. Hryshchyk
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7619
Author(s):  
Chunfang Wu ◽  
Jing Ba ◽  
Xiaoqin Zhong ◽  
José M. Carcione ◽  
Lin Zhang ◽  
...  

Elastic wave propagation in partially saturated reservoir rocks induces fluid flow in multi-scale pore spaces, leading to wave anelasticity (velocity dispersion and attenuation). The propagation characteristics cannot be described by a single-scale flow-induced dissipation mechanism. To overcome this problem, we combine the White patchy-saturation theory and the squirt flow model to obtain a new anelasticity theory for wave propagation. We consider a tight sandstone Qingyang area, Ordos Basin, and perform ultrasonic measurements at partial saturation and different confining pressures, where the rock properties are obtained at full-gas saturation. The comparison between the experimental data and the theoretical results yields a fairly good agreement, indicating the efficacy of the new theory.


Sign in / Sign up

Export Citation Format

Share Document