Real-Time 3D Earth Model Updating While Drilling a Horizontal Well

2002 ◽  
Author(s):  
Alberto Malinverno ◽  
Ballard Andrews ◽  
Nicholas Bennett ◽  
Ian Bryant ◽  
Michael Prange ◽  
...  
2021 ◽  
Author(s):  
Yessica Fransisca ◽  
Karinka Adiandra ◽  
Vinda Manurung ◽  
Laila Warkhaida ◽  
M. Aidil Arham ◽  
...  

Abstract This paper describes the combination of strategies deployed to optimize horizontal well placement in a 40 ft thick isotropic sand with very low resistivity contrast compared to an underlying anisotropic shale in Semoga field. These strategies were developed due to previously unsuccessful attempts to drill a horizontal well with multiple side-tracks that was finally drilled and completed as a high-inclined well. To maximize reservoir contact of the subject horizontal well, a new methodology on well placement was developed by applying lessons learned, taking into account the additional challenges within this well. The first approach was to conduct a thorough analysis on the previous inclined well to evaluate each formation layer’s anisotropy ratio to be used in an effective geosteering model that could better simulate the real time environment. Correct selections of geosteering tools based on comprehensive pre-well modelling was considered to ensure on-target landing section to facilitate an effective lateral section. A comprehensive geosteering pre-well model was constructed to guide real-time operations. In the subject horizontal well, landing strategy was analysed in four stages of anisotropy ratio. The lateral section strategy focused on how to cater for the expected fault and maintain the trajectory to maximize reservoir exposure. Execution of the geosteering operations resulted in 100% reservoir contact. By monitoring the behaviour of shale anisotropy ratio from resistivity measurements and gamma ray at-bit data while drilling, the subject well was precisely landed at 11.5 ft TVD below the top of target sand. In the lateral section, wellbore trajectory intersected two faults exhibiting greater associated throw compared to the seismic estimate. Resistivity geo-signal and azimuthal resistivity responses were used to maintain the wellbore attitude inside the target reservoir. In this case history well with a low resistivity contrast environment, this methodology successfully enabled efficient operations to land the well precisely at the target with minimum borehole tortuosity. This was achieved by reducing geological uncertainty due to anomalous resistivity data responding to shale electrical anisotropy. Recognition of these electromagnetic resistivity values also played an important role in identifying the overlain anisotropic shale layer, hence avoiding reservoir exit. This workflow also helped in benchmarking future horizontal well placement operations in Semoga Field. Technical Categories: Geosteering and Well Placement, Reservoir Engineering, Low resistivity Low Contrast Reservoir Evaluation, Real-Time Operations, Case Studies


2021 ◽  
Author(s):  
Abdul Mohsen Al-Maskeen ◽  
Sadaqat Ali

Abstract A new automated approach to well correlation is presented that utilizes real-time Logging While-Drilling (LWD) data and predicted well curve to dynamically update subsurface layers during geosteering operations. The automatically created predicted log and a dynamically updated structural framework provides the foundation of the process. The predicted log is created using vertical sections of the nearby wells, which provide high confidence for determining depth and stratigraphic position of the geosteered well. The results give a better understanding of thickness variation in the horizontal part of the reservoir and maximize the reservoir contact (Sung, 2008). A new advanced methodology introduced in this study involves the creation of a dynamic structural framework model, from which horizontal well correlation is performed using real-time well logs and predicted logs that are generated from adjacent wells. The predicted logs are correlated to the LWD logs using anchor points and an interactive stretching and squeezing process that honors true stratigraphic thickness. Each new anchor point results in the creation of an additional control point that is used to build a more precise structural framework model. This new approach enables more rapid well log interpretation, increased accuracy and the ability to dynamically update the subsurface model during drilling. It also enables more efficient steering of the wellbore into the most productive zones of the reservoir. This study demonstrates how wells with over 10,000 feet of horizontal reservoir contact can be correlated in a real-time geosteering environment in a dynamic, efficient and accurate manner. The proposed process dramatically helps reduce the cost of drilling and the time it takes to dynamically regenerate accurate updated maps of the subsurface. It represents a major improvement in the understanding and modeling of complex, heterogeneous reservoirs by fostering a multi-disciplinary environment of cross-domain experts that are able to collaborate seamlessly as asset-teams. Both accuracy and efficiency gains have been realized by incorporating this methodology in the characterization of multi-stacked reservoirs.


2017 ◽  
Vol 57 (2) ◽  
pp. 728
Author(s):  
Dominic Fell ◽  
Kiran Dyal ◽  
Tony Hallam ◽  
Sebastian Nixon

Rugose seabed and near seafloor features in marine seismic datasets such as canyons, mass transport deposits and paleo-channels, present a major imaging challenge that can be overcome by a rigorous and careful approach in the earth model building process. To obtain an accurate image of the deeper target levels, a modelling and data driven update of the distinctive velocity characteristics of the overburden features are necessary. Without adequately addressing the complexity of the shallow velocity field, the final depth image of the target intervals can be poorly focussed and contaminated with non-geologic structural distortions. Inadequate corrections ultimately have an adverse impact upon the interpretation of the dataset. This paper presents a successful earth modelling approach used to obtain an accurate depth image for a marine dataset located on the shelf break in the Otway Basin. The case study area includes extensive seafloor canyons and associated paleo-channels, requiring the strategic use of several geologically constrained model updating technologies in order to obtain a final imaged section free of velocity related structural distortions.


2020 ◽  
Vol 19 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Su Tingli ◽  
Tang Zhenyun ◽  
Peng Lingyun ◽  
Bai Yuting ◽  
Jin Xuebo ◽  
...  

2016 ◽  
Author(s):  
Osman Hamid ◽  
Bryan Hall-Thompson ◽  
Ahmed Omair ◽  
Sajjad Ahmed ◽  
Mujahid Ahmed
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document