Rock Type Constrained 3D Reservoir Characterization and Modeling

Author(s):  
Fernando P.T. Silva ◽  
Ahmed A. Ghani ◽  
Abdulla Al Mansoori ◽  
Asnul Bahar
1999 ◽  
Vol 2 (02) ◽  
pp. 149-160 ◽  
Author(s):  
D.K. Davies ◽  
R.K. Vessell ◽  
J.B. Auman

Summary This paper presents a cost effective, quantitative methodology for reservoir characterization that results in improved prediction of permeability, production and injection behavior during primary and enhanced recovery operations. The method is based fundamentally on the identification of rock types (intervals of rock with unique pore geometry). This approach uses image analysis of core material to quantitatively identify various pore geometries. When combined with more traditional petrophysical measurements, such as porosity, permeability and capillary pressure, intervals of rock with various pore geometries (rock types) can be recognized from conventional wireline logs in noncored wells or intervals. This allows for calculation of rock type and improved estimation of permeability and saturation. Based on geological input, the reservoirs can then be divided into flow units (hydrodynamically continuous layers) and grid blocks for simulation. Results are presented of detailed studies in two, distinctly different, complex reservoirs: a low porosity carbonate reservoir and a high porosity sandstone reservoir. When combined with production data, the improved characterization and predictability of performance obtained using this unique technique have provided a means of targeting the highest quality development drilling locations, improving pattern design, rapidly recognizing conformance and formation damage problems, identifying bypassed pay intervals, and improving assessments of present and future value. Introduction This paper presents a technique for improved prediction of permeability and flow unit distribution that can be used in reservoirs of widely differing lithologies and differing porosity characteristics. The technique focuses on the use and integration of pore geometrical data and wireline log data to predict permeability and define hydraulic flow units in complex reservoirs. The two studies presented here include a low porosity, complex carbonate reservoir and a high porosity, heterogeneous sandstone reservoir. These reservoir classes represent end-members in the spectrum of hydrocarbon reservoirs. Additionally, these reservoirs are often difficult to characterize (due to their geological complexity) and frequently contain significant volumes of remaining reserves.1 The two reservoir studies are funded by the U.S. Department of Energy as part of the Class II and Class III Oil Programs for shallow shelf carbonate (SSC) reservoirs and slope/basin clastic (SBC) reservoirs. The technique described in this paper has also been used to characterize a wide range of other carbonate and sandstone reservoirs including tight gas sands (Wilcox, Vicksburg, and Cotton Valley Formations, Texas), moderate porosity sandstones (Middle Magdalena Valley, Colombia and San Jorge Basin, Argentina), and high porosity reservoirs (Offshore Gulf Coast and Middle East). The techniques used for reservoir description in this paper meet three basic requirements that are important in mature, heterogeneous fields.The reservoir descriptions are log-based. Flow units are identified using wireline logs because few wells have cores. Integration of data from analysis of cores is an essential component of the log models.Accurate values of permeability are derived from logs. In complex reservoirs, values of porosity and saturation derived from routine log analysis often do not accurately identify productivity. It is therefore necessary to develop a log model that will allow the prediction of another producibility parameter. In these studies we have derived foot-by-foot values of permeability for cored and non-cored intervals in all wells with suitable wireline logs.Use only the existing databases. No new wells will be drilled to aid reservoir description. Methodology Techniques of reservoir description used in these studies are based on the identification of rock types (intervals of rock with unique petrophysical properties). Rock types are identified on the basis of measured pore geometrical characteristics, principally pore body size (average diameter), pore body shape, aspect ratio (size of pore body: size of pore throat) and coordination number (number of throats per pore). This involves the detailed analysis of small rock samples taken from existing cores (conventional cores and sidewall cores). The rock type information is used to develop the vertical layering profile in cored intervals. Integration of rock type data with wireline log data allows field-wide extrapolation of the reservoir model from cored to non-cored wells. Emphasis is placed on measurement of pore geometrical characteristics using a scanning electron microscope specially equipped for automated image analysis procedures.2–4 A knowledge of pore geometrical characteristics is of fundamental importance to reservoir characterization because the displacement of hydrocarbons is controlled at the pore level; the petrophysical properties of rocks are controlled by the pore geometry.5–8 The specific procedure includes the following steps.Routine measurement of porosity and permeability.Detailed macroscopic core description to identify vertical changes in texture and lithology for all cores.Detailed thin section and scanning electron microscope analyses (secondary electron imaging mode) of 100 to 150 small rock samples taken from the same locations as the plugs used in routine core analysis. In the SBC reservoir, x-ray diffraction analysis is also used. The combination of thin section and x-ray analyses provides direct measurement of the shale volume, clay volume, grain size, sorting and mineral composition for the core samples analyzed.Rock types are identified for each rock sample using measured data on pore body size, pore throat size and pore interconnectivity (coordination number and pore arrangement).


2020 ◽  
Vol 10 (8) ◽  
pp. 3157-3177 ◽  
Author(s):  
Sameer Noori Ali Al-Jawad ◽  
Muhammad Abd Ahmed ◽  
Afrah Hassan Saleh

Abstract The reservoir characterization and rock typing is a significant tool in performance and prediction of the reservoirs and understanding reservoir architecture, the present work is reservoir characterization and quality Analysis of Carbonate Rock-Types, Yamama carbonate reservoir within southern Iraq has been chosen. Yamama Formation has been affected by different digenesis processes, which impacted on the reservoir quality, where high positively affected were: dissolution and fractures have been improving porosity and permeability, and destructive affected were cementation and compaction, destroyed the porosity and permeability. Depositional reservoir rock types characterization has been identified depended on thin section analysis, where six main types of microfacies have been recognized were: packstone-grainstone, packstone, wackestone-packstone, wackestone, mudstone-wackestone, and mudstone. By using flow zone indicator, four groups have been defined within Yamama Formation, where the first type (FZI-1) represents the bad quality of the reservoir, the second type (FZI-2) is characterized by the intermediate quality of the reservoir, third type (FZI-3) is characterized by good reservoir quality, and the fourth type (FZI-4) is characterized by good reservoir quality. Six different rock types were identified by using cluster analysis technique, Rock type-1 represents the very good type and characterized by low water Saturation and high porosity, Rock type-2 represents the good rock type and characterized by low water saturation and medium–high porosity, Rock type-3 represents intermediate to good rock type and characterized by low-medium water saturation and medium porosity, Rock type-4 represents the intermediate rock type and characterized by medium water saturation and low–medium porosity, Rock type-5 represents intermediate to bad rock type and characterized by medium–high water saturation and medium–low porosity, and Rock type-6 represents bad rock type and characterized by high water saturation and low porosity. By using Lucia Rock class typing method, three types of rock type classes have been recognized, the first group is Grain-dominated Fabrics—grainstone, which represents a very good rock quality corresponds with (FZI-4) and classified as packstone-grainstone, the second group is Grain-dominated Fabrics—packstone, which corresponds with (FZI-3) and classified as packstone microfacies, the third group is Mud-dominated Fabrics—packstone, packstone, correspond with (FZI-1 and FZI-2) and classified as wackestone, mudstone-wackestone, and mudstone microfacies.


2014 ◽  
Vol 2 (1) ◽  
pp. SA57-SA66 ◽  
Author(s):  
Nguyen Huy Ngoc ◽  
Sahalan B. Aziz ◽  
Nguyen Anh Duc

The Pre-Tertiary fractured basement forms important hydrocarbon-bearing reservoirs in the Vietnam-Malaysia offshore area, and is being produced from such reservoirs in Vietnam where the authors have extensive working experiences for both clastics and fractured basement reservoirs and in both exploration and development phases. Due to their very small matrix porosity, the basement rocks become reservoirs only when they are strongly fractured. The quality of the fractured basement reservoirs depends on basement rock type, fracture density, and fracture characteristics including aperture, azimuth, dip, continuity, and fracture system intersection. Three-dimensional seismic data is applied widely to characterize these basement reservoirs. Based on results from applying many different seismic attributes to 3D seismic data from different Pre-Tertiary fractured basements in Vietnam and Malaysia, we demonstrate the utility of attributes in characterizing fractured basement reservoirs. Seismic attributes help predict the basement rock type and fracture characteristics from near top basement to deep inside basement. In the zone near the top of basement, the characteristics of fracture systems can be predicted by amplitude, coherence, curvature, and secondary derivative attributes. Deep inside the basement, relative acoustic impedance and its attributes have been successfully applied to predict the distribution of high fracture density, while dip and azimuth, ant-tracking, and gradient magnitude attributes have proven to be effective for predicting fracture characteristics. The accuracy of fracture characterization based on seismic attributes has been verified by drilling results.


2021 ◽  
Author(s):  
Lamia Boussa ◽  
Amar Boudella ◽  
José Almeida

<p>Reservoir characterization and flow studies require accurate inputs of petrophysical properties such as porosity, permeability, water and residual oil saturation and capillary pressure functions. All these parameters are necessary to evaluate, predict and optimize the production of a reservoir.</p><p>This study is the continuity of a previous work that summarize the construction of a net rock aerial map by combining stochastic simulation of rock types and processed seismic data. In this case study; petrophysical data are integrated to construct a 3D model of porosity corresponding to the 3D model of rock type. This is in order to further understand the intricacies of the geostatistical methods used and the impact of the technique on the resulting uncertainty profile</p><p>For the construction of 3D model of porosity corresponding to the 3D model of rock types, a geostatistical workflow encompassing the modelling of experimental variograms and sequential Gaussian simulation (SGS) were used. The geostatsitical methodologies of stochastic simulation such as SGS enabled the generation of several realistic scenarios of constinuous data, such as porosity, within a volume, thus facilitating the association of local probabilities of occurrence of each rock type.</p><p>The resulting porosity image properly combines the available seismic and well data and balance the local and regional uncertainty of the studied reservoir volume.</p><p><strong>Keywords: </strong>Geostatistics, Sequential Gaussian Simulation (SGS), Rock types, Porosity, Uncertainty, Spatial resolution.</p>


2016 ◽  
Author(s):  
Mariano Arcuri ◽  
Carlos Zavala ◽  
Mariano Di Meglio ◽  
Agustin Zorzano ◽  
Javier Iparraguirre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document