Finite Element Analysis Of Oil Sands Subjected To Thermal Effects

Author(s):  
H.H. Vaziri
2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Y. Li ◽  
S. Frimpong ◽  
W. Y. Liu

A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA) system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA) method and von Mises yield criterion using the Algor mechanical event simulation (MES) software. The three-dimensional (3D) distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Moustafa Sayem El-Daher

Thermal effects are the main obstacle to getting high power and good beam quality in diode end-pumped solid-state lasers. In this work, a theoretical investigation of thermal effects in single and dual end-pumped solid-state lasers is carried out using finite element analysis (FEA) for a selected number of widely used laser producing materials, namely, Nd:YAG, Yb:YAG, and Nd:KGW. Crystals with different dimensions are also investigated both in single and in dual end-pumped configuration. Finally, the effect of using composite crystals on thermal lensing is investigated. An experiment to measure the thermal focal length for two different crystals was carried out and a comparison with FEA computed focal length of the thermal lens is made. In all cases studied in this work, results show clear effects of thermal lensing with some differences depending on crystal type, pump power, and size.


2015 ◽  
Vol 68 (5) ◽  
pp. 829-838 ◽  
Author(s):  
Fanling Meng ◽  
Aiguo Liu ◽  
Huanhuan Sun ◽  
Mianhuan Guo

Sign in / Sign up

Export Citation Format

Share Document