scholarly journals Predicting Fluid Responsiveness Using Pulse Pressure Variation after Tidal Volume Challenge in Postoperative Patients Receiving Lung Protective Ventilation: A Clinical Trial

2019 ◽  
Author(s):  
Pimsai Kunakorn ◽  
Sunthiti Morakul ◽  
Tananchai Petnak ◽  
Pongsasit Singhatat ◽  
Chawika Pisitsak

Abstract Background: Lung protective ventilation with low tidal volume is beneficial in patients with intermediate to high risk of postoperative pulmonary complications. However, during low tidal volume ventilation, pulse pressure variation (PPV) and stroke volume variation (SVV) do not predict fluid responsiveness. We aimed to determine whether changes in PPV and SVV after transient increases in tidal volume can predict fluid responsiveness in these patients. Methods: We recorded 22 measurements from 15 patients who experienced postoperative acute circulatory failure. We performed a tidal volume challenge by transiently increasing tidal volume (VT) from 6 to 8 mL/kg (VT6–8), 8 to 10 mL/kg (VT8–10), and 6 to 10 mL/kg (VT6–10) of patients' predicted body weight. The change in PPV (∆PPV) at VT6–8 (∆PPV6–8), VT8–10 (∆PPV8–10), VT6–10 (∆PPV6–10) and the change in SVV (∆SVV) at VT6–8 (∆SVV6–8), VT8–10 (∆SVV8–10), and VT6–10 (∆SVV6–10) were recorded. Patients were classified as fluid responders if there was an increase in stroke volume of more than 10% after a fluid bolus. Results: Following the tidal volume challenge, ∆PPV and ∆SVV failed to predict fluid responsiveness, with areas under the receiver operating characteristic curves (with 95% confidence intervals) of 0.49 (0.23–0.74), 0.54 (0.29–0.79), 0.52 (0.28–0.77) for ∆PPV6–8, ∆PPV8–10, and ∆PPV6–10, and 0.55 (0.30–0.80), 0.55 (0.31–0.80), and 0.59 (0.34–0.84) for ∆SVV6–8, ∆SVV8–10, and ∆SVV6–10, respectively. Conclusions: Changes in PPV and SVV after the tidal volume challenge did not predict fluid responsiveness in postoperative patients with low tidal volume ventilation. Trial registration: This trial was registered with Clinicaltrials.in.th, TCTR20190808003.

2020 ◽  
Vol 103 (8) ◽  
pp. 729-735

Background: Lung protective ventilation with low tidal volume (VT) is beneficial in patients with intermediate to high risk of post-operative pulmonary complications. However, during low VT ventilation, pulse pressure variation (PPV) and stroke volume variation (SVV) do not predict fluid responsiveness. Objective: To determine whether changes in PPV and SVV after transient increases in VT could predict fluid responsiveness. Materials and Methods: The authors recorded 20 measurements from 15 patients experiencing post-operative acute circulatory failure. The authors performed a VT challenge by transient increasing VT from 6 to 8 mL/kg (VT₆-₈), 8 to 10 mL/kg (VT₈-₁₀), and 6 to 10 mL/kg (VT₆-₁₀) of patients’ predicted body weight. The change in PPV (∆PPV) at VT₆-₈ (∆PPV₆-₈), VT₈-₁₀ (∆PPV₈-₁₀), VT₆-₁₀ (∆PPV₆-₁₀), and the change in SVV (∆SVV) at VT₆-₈ (∆SVV₆-₈), VT₈-₁₀ (∆SVV₈-₁₀), and VT₆-₁₀ (∆SVV₆-₁₀) were recorded. Patients were classified as fluid responders if there was an increase in stroke volume of more than 10% after a fluid bolus. Results: Following the VT challenge, ∆PPV and ∆SVV failed to predict fluid responsiveness, with areas under the receiver operating characteristic curves (with 95% confidence intervals) of 0.49 (0.23 to 0.74), 0.54 (0.29 to 0.79), 0.52 (0.28 to 0.77) for ∆PPV₆-₈, ∆PPV₈-₁₀, and ∆PPV₆-₁₀, and 0.55 (0.30 to 0.80), 0.55 (0.31 to 0.80), and 0.59 (0.34 to 0.84) for ∆SVV₆-₈, ∆SVV₈-₁₀, and ∆SVV₆-₁₀, respectively. Conclusion: Changes in PPV and SVV after the VT challenge did not predict fluid responsiveness in post-operative patients with low VT ventilation. Trial registration: Thai Clinical Trials Registry, TCTR 20190808003 Keywords: Pulse pressure variation, Stroke volume variation, Fluid responsiveness, Tidal volume challenge


2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: The reliability of pulse pressure variation (PPV) and stroke volume variation (SVV) is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. A recent study indicated that changes in PPV or SVV obtained by transiently increasing VT (VT challenge) accurately predicted fluid responsiveness even in critically ill patients receiving low VT. We evaluated whether the changes in PPV and SVV induced by a VT challenge predicted fluid responsiveness during pneumoperitoneum. Methods: We performed an interventional prospective study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, an increase in PPV > 1% after the VT challenge showed excellent predictive capability for fluid responsiveness, with an area under the curve (AUC) of 0.95 [95% confidence interval (CI), 0.83–0.99, P < 0.0001; sensitivity 92%, specificity 86%]. An increase in SVV > 2% after the VT challenge predicted fluid responsiveness, but showed only fair predictive capability, with an AUC of 0.76 (95% CI, 0.60–0.89, P < 0.0006; sensitivity 46%, specificity 100%). The augmented values of PPV and SVV following VT challenge also showed the improved predictability of fluid responsiveness compared to PPV and SVV values (as measured by VT) of 6 ml/kg. Conclusions: The change in PPV following the VT challenge has excellent reliability in predicting fluid responsiveness in our surgical population. The change in SVV and augmented values of PPV and SVV following this test are also reliable.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
D F C Azevedo ◽  
R M Viera De Melo ◽  
A C Cunha ◽  
L G S Brito ◽  
T Viana ◽  
...  

Abstract Background It is known that in the immediate postoperative period of cardiac surgery, strict control of hemodynamic variables and blood volume is necessary, since there is an imbalance between oxygen supply and consumption. Thus, the present study seeks to validate methods previously used in different clinical situations to predict fluid responsiveness, in the current scenario of the immediate postoperative period of cardiac surgery. Purpose To evaluate the influence of “tidal volume challenge” from 6 ml / kg to 8 ml / kg of the predicted body weight (PBW) in conjunction with the end expiratory occlusion test (EEOT) in the variation of pulse pressure to predict fluid responsiveness in the immediate postoperative period of cardiac surgery. Methodology This prospective study included 30 patients after cardiac surgery. Hemodynamic and ventilatory parameters were initially recorded in mechanical ventilation at 6 ml/kg and after tidial volume challenge and with the EEOT at 8 ml/kg of predicted body weight (PBW). After recorded the intervention data, there was a return to ventilation at 6 ml/kg and a saline infusion of 500 ml was performed for 15 minutes. Fluid responsiveness was defined for patients who had an increase of 10% or more in velocity time integral (VTI) by echocardiogram after volume expansion compared to baseline value. Multivariate analysis was used to identify independent predictors of fluid response status. Sensitivity and specificity analyzes were performed to determine the predictive precision of each parameter. Results The main result of our study is that, when the tidal volume is increased from 6 to 8 ml/kg of PBW, the relative increase in pulse pressure variation (%ΔPPV6–8) predicts with excellent accuracy responsiveness to fluids with cut-off values of 18.3%, with sensitivity of 92.9% and specificity of 84% (P=0.019). Although changing PPV6, EEOT6 and EEOT8 are not reliable in predicting fluid responsiveness, they still require additional calculations. PPV8 also discriminates between responders and non-responders; however, with sensitivity (78.6%) and specificity (66.6%) when the value found in the PPV8 is up 8.5, but without statistical significance (figure). Conclusion The challenge of tidal volume and its influence on the ΔPP variation has excellent accuracy to predict fluid responsiveness in the immediate postoperative period of cardiac surgery. EEOT did not present good accuracy to predict fluid responsiveness in patients in the immediate postoperative period of cardiac surgery. FUNDunding Acknowledgement Type of funding sources: None.


2019 ◽  
Author(s):  
Joo-Hyun Jun ◽  
Rack Kyung Chung ◽  
Hee Jung Baik ◽  
Mi Hwa Chung ◽  
Joon-Sang Hyeon ◽  
...  

Abstract Background: Pulse pressure variation (PPV) and stroke volume variation (SVV) induced by mechanical ventilation are widely used as predictors of fluid responsiveness. However, the reliability of these dynamic preload indices is controversial under pneumoperitoneum. In addition, the usefulness of these indices is being called into question with the increasing adoption of lung-protective ventilation using low tidal volume (VT) in surgical patients. We investigated whether increasing tidal volume (VT) from 6 to 8 ml/kg can improve the predictive power of PPV and SVV during pneurmoperitoneum. Methods: We performed a prospective observational study in patients undergoing robot-assisted laparoscopic surgery in the Trendelenburg position under lung-protective ventilation. PPV, SVV, and the stroke volume index (SVI) were measured at a VT of 6 mL/kg and 3 minutes after increasing the VT to 8 mL/kg. The VT was reduced to 6 mL/kg, and measurements were performed before and 5 minutes after volume expansion (infusing 6% hydroxyethyl starch 6 ml/kg over 10 minutes). Fluid responsiveness was defined as ≥ 15% increase in the SVI. Results: Twenty-four of the 38 patients enrolled in the study were responders. In the receiver operating characteristic curve analysis, the augmented PPV and SVV associated with a temporary increase in VT from 6 to 8 ml/kg improved the predictability of fluid responsiveness, with area under the curve (AUC) values of 0.85 (95% confidence interval (CI), 0.70–0.95, P < 0.0001) and 0.77 (95% CI 0.61–0.89, P = 0.0003), compared to PPV and SVV values (as measured by VT) of 6 ml/kg. The absolute change in PPV and SVV values obtained by transiently increasing VT also predicted fluid responsiveness, with AUC values of 0.95 (95% CI 0.83–0.99, P < 0.0001) and 0.76 (95% CI 0.60–0.89, P = 0.0006). Conclusions: Augmented PPV and SVV values, and absolute changes therein obtained by increasing VT from 6 to 8 ml/kg, predicted fluid responsiveness with high sensitivity and specificity in our surgical population.


PeerJ ◽  
2022 ◽  
Vol 9 ◽  
pp. e12649
Author(s):  
Rainer Thomas ◽  
Tanghua Liu ◽  
Arno Schad ◽  
Robert Ruemmler ◽  
Jens Kamuf ◽  
...  

Background Shedding of the endothelial glycocalyx can be observed regularly during sepsis. Moreover, sepsis may be associated with acute respiratory distress syndrome (ARDS), which requires lung protective ventilation with the two cornerstones of application of low tidal volume and positive end-expiratory pressure. This study investigated the effect of a lung protective ventilation on the integrity of the endothelial glycocalyx in comparison to a high tidal volume ventilation mode in a porcine model of sepsis-induced ARDS. Methods After approval by the State and Institutional Animal Care Committee, 20 male pigs were anesthetized and received a continuous infusion of lipopolysaccharide to induce septic shock. The animals were randomly assigned to either low tidal volume ventilation, high tidal volume ventilation, or no-LPS-group groups and observed for 6 h. In addition to the gas exchange parameters and hematologic analyses, the serum hyaluronic acid concentrations were determined from central venous blood and from pre- and postpulmonary and pre- and postcerebral circulation. Post-mortem analysis included histopathological evaluation and determination of the pulmonary and cerebral wet-to-dry ratios. Results Both sepsis groups developed ARDS within 6 h of the experiment and showed significantly increased serum levels of hyaluronic acid in comparison to the no-LPS-group. No significant differences in the hyaluronic acid concentrations were detected before and after pulmonary and cerebral circulation. There was also no significant difference in the serum hyaluronic acid concentrations between the two sepsis groups. Post-mortem analysis showed no significant difference between the two sepsis groups. Conclusion In a porcine model of septic shock and ARDS, the serum hyaluronic acid levels were significantly elevated in both sepsis groups in comparison to the no-LPS-group. Intergroup comparison between lung protective ventilated and high tidal ventilated animals revealed no significant differences in the serum hyaluronic acid levels.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jed Lipes ◽  
Azadeh Bojmehrani ◽  
Francois Lellouche

Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.


Sign in / Sign up

Export Citation Format

Share Document