beta proteins
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Julia Lachner ◽  
Florian Ehrlich ◽  
Matthias Wielscher ◽  
Matthias Farlik ◽  
Marcela Hermann ◽  
...  

AbstractThe growth of skin appendages, such as hair, feathers and scales, depends on terminal differentiation of epidermal keratinocytes. Here, we investigated keratinocyte differentiation in avian scutate scales. Cells were isolated from the skin on the legs of 1-day old chicks and subjected to single-cell transcriptomics. We identified two distinct populations of differentiated keratinocytes. The first population was characterized by mRNAs encoding cysteine-rich keratins and corneous beta-proteins (CBPs), also known as beta-keratins, of the scale type, indicating that these cells form hard scales. The second population of differentiated keratinocytes contained mRNAs encoding cysteine-poor keratins and keratinocyte-type CBPs, suggesting that these cells form the soft interscale epidermis. We raised an antibody against keratin 9-like cysteine-rich 2 (KRT9LC2), which is encoded by an mRNA enriched in the first keratinocyte population. Immunostaining confirmed expression of KRT9LC2 in the suprabasal epidermal layers of scutate scales but not in interscale epidermis. Keratinocyte differentiation in chicken leg skin resembled that in human skin with regard to the transcriptional upregulation of epidermal differentiation complex genes and genes involved in lipid metabolism and transport. In conclusion, this study defines gene expression programs that build scutate scales and interscale epidermis of birds and reveals evolutionarily conserved keratinocyte differentiation genes.


2021 ◽  
Vol 28 (5) ◽  
pp. 267-274
Author(s):  
Lorenzo Alibardi

During epidermal differentiation in the scales of lizards and snakes, from the basal layer beta- and later alpha-keratinocytes are generated to form beta-and alpha-corneous layers. In the lizard Anolis carolinensis, minor proteins derived from the EDC (Epidermal Differentiation Complex) are added to the main constituent proteins, IFKs (Intermediate Filament Keratins) and CBPs (Corneous Beta Proteins, formerly indicated as beta keratins). One of these proteins that previous studies showed to be exclusively expressed in the skin, EDWM (EDC protein containing high GSRC amino acids) is rich in cysteine and arginine, amino acids that form numerous –S–S– and electro-static chemical bonds in the corneous material. Light and electron microscopy immunolbeling for EDWM show a diffuse localization in differentiating beta-cells and in some alpha-cells, in particular those of the clear-layer, involved in epidermal shedding. The study suggests that EDWM may function as a matrix protein that binds to IFKs and CBPs, contributing to the formation of the specific corneous material present in beta- and alpha-corneous layers. In particular, its higher immunolocalization in the maturing clear layer indicates that this protein is important for its differentiation and epidermal shedding in A. carolinensis and likely also in other lepidosaurian reptiles.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Caroline Solazzo ◽  
Jean Soulat ◽  
Timothy Cleland

Tortoiseshell is a proteinaceous material derived from the scutes of marine turtles, and was shaped into an abundance of objects, especially luxurious items, at its peak in the seventeenth and eighteenth century. It has continued to be used even after the advent of plastics and remains one of the main causes of illegal poaching of marine turtles, in particular the hawksbill turtle Eretmochelys imbricata . Tortoiseshell is made of structural proteins, of which the most abundant are known as β-keratins, or ‘corneous beta-proteins' (CBPs), a family of short proteins containing a central structure in β-sheets. There are, however, few CBP sequences of marine turtles in protein databases. The scutes of the five main species of marine turtles ( Chelonia mydas , Caretta caretta, Eretmochelys imbricata , Lepidochelys olivacea and Lepidochelys kempii ) were analysed by proteomics, using nano-liquid chromatography-Orbitrap-mass spectrometry to generate peptidic markers for species identification. A total of 187 marker sequences were identified, the large majority of them obtained from automated de novo sequencing. The sequences were classified into peptides A to F: A to D at the N-terminus and central region that forms the β-pleated sheets, E1–4 for a variable region of glycine-repeats region and F at the C-terminus. The markers were tested against a set of combs discovered in various archaeological sites of modern period in France, successfully identifying hawksbill turtle and highlighting patterns of degradation in archaeological tortoiseshell.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Cristian Torri ◽  
Giuseppe Falini ◽  
Devis Montroni ◽  
Simona Fermani ◽  
Roberta Teta ◽  
...  

Abstract In order to understand the cutaneous water loss in the desert-adapted and venomous lizard Heloderma suspectum, the microscopic structure and lipid composition of epidermal molts have been examined using microscopic, spectroscopic and chemical analysis techniques. The molt is formed by a variably thick, superficial beta-layer, an extensive mesos-region and few alpha-cells in its lowermost layers. The beta-layer contains most corneous beta proteins while the mesos-region is much richer in lipids. The proteins in the mesos-region are more unstructured than those located in the beta-layer. Most interestingly, among other lipids, high contents of cholesteryl-β-glucoside and cholesteryl sulfate were detected, molecules absent or present in traces in other species of squamates. These cholesterol derivatives may be involved in the stabilization and compaction of the mesos-region, but present a limited permeability to water movements. The modest resistance to cutaneous water-loss of this species is compensated by adopting other physiological strategies to limit thermal damage and water transpiration as previous eco-physiological studies have indicated. The increase of steroid derivatives may also be implicated in the heat shock response, influencing the relative behavior in this desert-adapted lizard.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nathan R. Carroll ◽  
Luis M. Chiappe ◽  
David J. Bottjer

AbstractWe describe three-dimensionally preserved feathers in mid-Cretaceous Burmese amber that share macro-morphological similarities (e.g., proportionally wide rachis with a “medial stripe”) with lithic, two-dimensionally preserved rachis-dominated feathers, first recognized in the Jehol Biota. These feathers in amber reveal a unique ventrally concave and dorsoventrally thin rachis, and a dorsal groove (sometimes pigmented) that we identify as the “medial stripe” visible in many rachis-dominated rectrices of Mesozoic birds. The distally pennaceous portion of these feathers shows differentiated proximal and distal barbules, the latter with hooklets forming interlocking barbs. Micro-CT scans and transverse sections demonstrate the absence of histodifferentiated cortex and medullary pith of the rachis and barb rami. The highly differentiated barbules combined with the lack of obvious histodifferentiation of the barb rami or rachis suggests that these feathers could have been formed without the full suite and developmental interplay of intermediate filament alpha keratins and corneous beta-proteins that is employed in the cornification process of modern feathers. This study thus highlights how the development of these feathers might have differed from that of their modern counterparts, namely in the morphogenesis of the ventral components of the rachis and barb rami. We suggest that the concave ventral surface of the rachis of these Cretaceous feathers is not homologous with the ventral groove of modern rachises. Our study of these Burmese feathers also confirms previous claims, based on two-dimensional fossils, that they correspond to an extinct morphotype and it cautions about the common practice of extrapolating developmental aspects (and mechanical attributes) of modern feathers to those of stem birds (and their dinosaurian outgroups) because the latter need not to have developed through identical pathways.


2019 ◽  
Vol 20 (14) ◽  
pp. 3595 ◽  
Author(s):  
Salman Ali Al-Ahdal ◽  
Aminuddin Bin Ahmad Kayani ◽  
Mohd Anuar Md Ali ◽  
Jun Yuan Chan ◽  
Talal Ali ◽  
...  

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aβ) in a microfluidic environment. The Aβ was separated from the cells and characterized using the gradual dissolution of Aβ as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aβ under specific dielectrophoretic parameters. Further, Aβ in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aβ fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aβ to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aβ-related colloidal microfluidic research and could be applied to Alzheimer’s research in the future.


Sign in / Sign up

Export Citation Format

Share Document