scholarly journals Genome-wide analysis of long non-coding RNAs (lncRNAs) in two contrasting rapeseed (Brassica napus L.) genotypes subjected to drought stress

2019 ◽  
Author(s):  
Xiaoyu Tan ◽  
Su Li ◽  
Liyong Hu ◽  
Chunlei Zhang

Abstract Background: Drought stress is a major abiotic factor that affects rapeseed ( Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs’ response to drought stress is still lacking, especially in the case of B . napus . In order to further understand the molecular mechanism of the response of B . napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) in response to drought stress and rehydration treatment at the seedling stage. Results: A total of 5,546 down-regulated and 6,997 up-regulated mRNAs were detected in Q2 compared with 7,824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up-regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. We further identified 34 TFs corresponding to 126 differently expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differently expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes . Notably, some lncRNAs were co-expressed and co-located with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs which were co-located with LNC_002535 (XLOC_052298), LNC_004924 (XLOC_094954) and LNC_000539 (XLOC_012868) were mainly categorized as signal transport and defense/stress response. Finally, co-expression network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5,175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. Conclusions: The differentially expressed mRNAs and lncRNAs may play important roles in response to drought stress and rehydration treatments and could provide basic information for new ways to improve the drought resistance of Rapeseed Brassica napus .

2020 ◽  
Author(s):  
Xiaoyu Tan ◽  
Su Li ◽  
Liyong Hu ◽  
Chunlei Zhang

Abstract Background: Drought stress is a major abiotic factor that affects rapeseed (Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs’ response to drought stress is still lacking, especially in the case of B. napus. In order to further understand the molecular mechanism of the response of B. napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) in response to drought stress and rehydration treatment at the seedling stage. Results: A total of 5,546 down-regulated and 6,997 up-regulated mRNAs were detected in Q2 compared with 7,824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up-regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA- mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5,175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 TFs corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes. Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs which were co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. Conclusions: The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.


2020 ◽  
Author(s):  
Xiaoyu Tan ◽  
Su Li ◽  
Liyong Hu ◽  
Chunlei Zhang

Abstract Background: Drought stress is a major abiotic factor that affects rapeseed ( Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs’ response to drought stress is still lacking, especially in the case of B . napus . In order to further understand the molecular mechanism of the response of B . napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) in response to drought stress and rehydration treatment at the seedling stage. Results: A total of 5,546 down-regulated and 6,997 up-regulated mRNAs were detected in Q2 compared with 7,824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up-regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA- mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5,175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 TFs corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes . Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs which were co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. Conclusions: The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.


2020 ◽  
Author(s):  
Xiaoyu Tan ◽  
Su Li ◽  
Liyong Hu ◽  
Chunlei Zhang

Abstract Background: Drought stress is a major abiotic factor that affects rapeseed ( Brassica napus L.) productivity. Though previous studies indicated that long non-coding RNAs (lncRNAs) play a key role in response to drought stress, a scheme for genome-wide identification and characterization of lncRNAs’ response to drought stress is still lacking, especially in the case of B . napus . In order to further understand the molecular mechanism of the response of B . napus to drought stress, we compared changes in the transcriptome between Q2 (a drought-tolerant genotype) and Qinyou8 (a drought-sensitive genotype) in response to drought stress and rehydration treatment at the seedling stage. Results: A total of 5,546 down-regulated and 6,997 up-regulated mRNAs were detected in Q2 compared with 7,824 and 10,251 in Qinyou8, respectively; 369 down-regulated and 108 up-regulated lncRNAs were detected in Q2 compared with 449 and 257 in Qinyou8, respectively. LncRNA- mRNA interaction network analysis indicated that the co-expression network of Q2 was composed of 145 network nodes and 5,175 connections, while the co-expression network of Qinyou8 was composed of 305 network nodes and 22,327 connections. We further identified 34 TFs corresponding to 126 differentially expressed lncRNAs in Q2, and 45 TFs corresponding to 359 differentially expressed lncRNAs in Qinyou8. Differential expression analysis of lncRNAs indicated that up- and down-regulated mRNAs co-expressed with lncRNAs participated in different metabolic pathways and were involved in different regulatory mechanisms in the two genotypes . Notably, some lncRNAs were co-expressed with BnaC07g44670D, which are associated with plant hormone signal transduction. Additionally, some mRNAs which were co-located with XLOC_052298, XLOC_094954 and XLOC_012868 were mainly categorized as signal transport and defense/stress response. Conclusions: The results of this study increased our understanding of expression characterization of rapeseed lncRNAs in response to drought stress and re-watering, which would be useful to provide a reference for the further study of the function and action mechanisms of lncRNAs under drought stress and re-watering.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Teame Gereziher MEHARI ◽  
Yanchao XU ◽  
Richard Odongo MAGWANGA ◽  
Muhammad Jawad UMER ◽  
Joy Nyangasi KIRUNGU ◽  
...  

Abstract Background Cotton is an important commercial crop for being a valuable source of natural fiber. Its production has undergone a sharp decline because of abiotic stresses, etc. Drought is one of the major abiotic stress causing significant yield losses in cotton. However, plants have evolved self-defense mechanisms to cope abiotic factors like drought, salt, cold, etc. The evolution of stress responsive transcription factors such as the trihelix, a nodule-inception-like protein (NLP), and the late embryogenesis abundant proteins have shown positive response in the resistance improvement to several abiotic stresses. Results Genome wide identification and characterization of the effects of Light-Harvesting Chloro a/b binding (LHC) genes were carried out in cotton under drought stress conditions. A hundred and nine proteins encoded by the LHC genes were found in the cotton genome, with 55, 27, and 27 genes found to be distributed in Gossypium hirsutum, G. arboreum, and G. raimondii, respectively. The proteins encoded by the genes were unevenly distributed on various chromosomes. The Ka/Ks (Non-synonymous substitution rate/Synonymous substitution rate) values were less than one, an indication of negative selection of the gene family. Differential expressions of genes showed that majority of the genes are being highly upregulated in the roots as compared with leaves and stem tissues. Most genes were found to be highly expressed in MR-85, a relative drought tolerant germplasm. Conclusion The results provide proofs of the possible role of the LHC genes in improving drought stress tolerance, and can be explored by cotton breeders in releasing a more drought tolerant cotton varieties.


Sign in / Sign up

Export Citation Format

Share Document