scholarly journals Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions

2019 ◽  
Author(s):  
Oselyne Ong ◽  
Elise Kho ◽  
Pedro Esperança ◽  
Chris Freebairn ◽  
Floyd Dowell ◽  
...  

Abstract Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. However, it remains it is unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes or whether models derived from the laboratory or semi-field mosquitoes can be applied to mosquitoes reared under different environments. Methods: NIRS spectral data from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days old) and in semi-field cages populated by wild-caught pupae (resulting in adults of 1, 7 and 14 days old). Spectral data collected from mosquitoes were used to determine if models derived from laboratory material using partial least squares (PLS) regression for the development of predictive models could be effectively applied to mosquitoes from more natural semi-field environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between semi-field age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principle component analysis confirms substantial spectral variations between laboratory and semi-field mosquitoes despite both being derived from the same island population. Conclusions: Model trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity, however it was unable to predict age class of semi-field mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.

2020 ◽  
Author(s):  
Oselyne Ong ◽  
Elise Kho ◽  
Pedro Esperança ◽  
Chris Freebairn ◽  
Floyd Dowell ◽  
...  

Abstract Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field. Methods: NIR spectra from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days old) were compared to spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days old). Different partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on their ability to predict the age of mosquitoes from more natural environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principle component analysis confirms substantial spectral variations between laboratory and field-derived mosquitoes despite both originating from the same island population. Conclusions: Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.


2020 ◽  
Author(s):  
Oselyne Ong ◽  
Elise Kho ◽  
Pedro Esperança ◽  
Chris Freebairn ◽  
Floyd Dowell ◽  
...  

Abstract Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field. Methods: NIRS data from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days old) were analysed against spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days old). Different partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on their ability to predict the age of mosquitoes from more natural environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principle component analysis confirms substantial spectral variations between laboratory and field-derived mosquitoes despite both originating from the same island population. Conclusions: Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.


2020 ◽  
Author(s):  
Oselyne Ong ◽  
Elise Kho ◽  
Pedro Esperança ◽  
Chris Freebairn ◽  
Floyd Dowell ◽  
...  

Abstract Background: Practical, field-ready age-grading tools for mosquito vectors of disease are urgently needed because of the impact that daily survival has on vectorial capacity. Previous studies have shown that near-infrared spectroscopy (NIRS), in combination with chemometrics and predictive modeling, can forecast the age of laboratory-reared mosquitoes with moderate to high accuracy. It remains unclear whether the technique has utility for identifying shifts in the age structure of wild-caught mosquitoes. Here we investigate whether models derived from the laboratory strain of mosquitoes can be used to predict the age of mosquitoes grown from pupae collected in the field. Methods: NIRS data from adult female Aedes albopictus mosquitoes reared in the laboratory (2, 5, 8, 12 and 15 days old) were analysed against spectra from mosquitoes emerging from wild-caught pupae (1, 7 and 14 days old). Different partial least squares (PLS) regression methods trained on spectra from laboratory mosquitoes were evaluated on their ability to predict the age of mosquitoes from more natural environments. Results: Models trained on spectra from laboratory-reared material were able to predict the age of other laboratory-reared mosquitoes with moderate accuracy and successfully differentiated all day 2 and 15 mosquitoes. Models derived with laboratory mosquitoes could not differentiate between field-derived age groups, with age predictions relatively indistinguishable for day 1-14. Pre-processing of spectral data and improving the PLS regression framework to avoid overfitting can increase accuracy, but predictions of mosquitoes reared in different environments remained poor. Principle component analysis confirms substantial spectral variations between laboratory and field-derived mosquitoes despite both originating from the same island population. Conclusions: Models trained on laboratory mosquitoes were able to predict ages of laboratory mosquitoes with good sensitivity and specificity though they were unable to predict age of field-derived mosquitoes. This study suggests that laboratory-reared mosquitoes do not capture enough environmental variation to accurately predict the age of the same species reared under different conditions. Further research is needed to explore alternative pre-processing methods and machine learning techniques, and to understand factors that affect absorbance in mosquitoes before field application using NIRS.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xuyang Pan ◽  
Laijun Sun ◽  
Guobing Sun ◽  
Panxiang Rong ◽  
Yuncai Lu ◽  
...  

AbstractNeutral detergent fiber (NDF) content was the critical indicator of fiber in corn stover. This study aimed to develop a prediction model to precisely measure NDF content in corn stover using near-infrared spectroscopy (NIRS) technique. Here, spectral data ranging from 400 to 2500 nm were obtained by scanning 530 samples, and Monte Carlo Cross Validation and the pretreatment were used to preprocess the original spectra. Moreover, the interval partial least square (iPLS) was employed to extract feature wavebands to reduce data computation. The PLSR model was built using two spectral regions, and it was evaluated with the coefficient of determination (R2) and root mean square error of cross validation (RMSECV) obtaining 0.97 and 0.65%, respectively. The overall results proved that the developed prediction model coupled with spectral data analysis provides a set of theoretical foundations for NIRS techniques application on measuring fiber content in corn stover.


2018 ◽  
Vol 32 (12) ◽  
pp. 1319-1329 ◽  
Author(s):  
Mark Moss ◽  
Ellen Smith ◽  
Matthew Milner ◽  
Jemma McCready

Background: The use of herbal extracts and supplements to enhance health and wellbeing is increasing in western society. Aims: This study investigated the impact of the acute ingestion of a commercially available water containing an extract and hydrolat of rosemary ( Rosmarinus officinalis L. syn. Salvia rosmarinus Schleid.). Aspects of cognitive functioning, mood and cerebrovascular response measured by near-infrared spectroscopy provided the dependent variables. Methods: Eighty healthy adults were randomly allocated to consume either 250 mL of rosemary water or plain mineral water. They then completed a series of computerised cognitive tasks, followed by subjective measures of alertness and fatigue. Near-infrared spectroscopy monitored levels of total, oxygenated and deoxygenated haemoglobin at baseline and throughout the cognitive testing procedure. Results: Analysis of the data revealed a number of statistically significant, small, beneficial effects of rosemary water on cognition, consistent with those found previously for the inhalation of the aroma of rosemary essential oil. Of particular interest here are the cerebrovascular effects noted for deoxygenated haemoglobin levels during cognitive task performance that were significantly higher in the rosemary water condition. This represents a novel finding in this area, and may indicate a facilitation of oxygen extraction at times of cognitive demand. Conclusion: Taken together the data suggest potential beneficial properties of acute consumption of rosemary water. The findings are discussed in terms of putative metabolic and cholinergic mechanisms.


2015 ◽  
Vol 65 (10) ◽  
pp. A1917
Author(s):  
Hideaki Ota ◽  
Marco Magalhaes Pereira ◽  
Smita Negi ◽  
Thibault Lhermusier ◽  
Ricardo Escarcega Alarcon ◽  
...  

2000 ◽  
Vol 54 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Mark R. Riley ◽  
Mark A. Arnold ◽  
David W. Murhammer

This study was undertaken to quantitate the impact of increasing sample complexity on near-infrared spectroscopic (NIRS) measurements of small molecules in aqueous solutions with varying numbers of components. Samples with 2, 6, or 10 varying components were investigated. Within the 10-component samples, three analytes were quantified with errors below 6% and seven of the analytes were quantified with errors below 10%. An increase in the number of varying components can substantially increase the error associated with measurement. A comparison of measurement errors across sample sets, as gauged by the standard error of prediction (SEP), reveals that an increase in the number of varying components from 2 to 6 increases the SEP by approximately 50%. An increase from 2 to 10 varying components increases the SEP by approximately 340%. While there appear to be no substantial correlations between the presence of a specific analyte and the errors associated with quantification of another analyte, several analytes do display a small degree of sensitivity to varying concentrations of certain background components. The analysis also demonstrates that calibrations containing an overestimation of the numbers of varying components can substantially increase measurement errors and so calibrations must be constructed with an accurate understanding of the number of varying components that are likely to be encountered.


2019 ◽  
Author(s):  
Marta F. Maia ◽  
Melissa Kapulu ◽  
Michelle Muthui ◽  
Martin G. Wagah ◽  
Heather M. Ferguson ◽  
...  

AbstractLarge-scale surveillance of mosquito populations is crucial to assess the intensity of vector-borne disease transmission and the impact of control interventions. However, there is a lack of accurate, cost-effective and high-throughput tools for mass-screening of vectors. This study demonstrates proof-of-concept that near-infrared spectroscopy (NIRS) is capable of rapidly identifying laboratory strains of human malaria infection in African mosquito vectors. By using partial least square regression models based on malaria-infected and uninfected Anopheles gambiae mosquitoes, we showed that NIRS can detect oocyst- and sporozoite-stage Plasmodium falciparum infections with 88% and 95% accuracy, respectively. Accurate, low-cost, reagent-free screening of mosquito populations enabled by NIRS could revolutionize surveillance and elimination strategies for the most important human malaria parasite in its primary African vector species. Further research is needed to evaluate how the method performs in the field following adjustments in the training datasets to include data from wild-caught infected and uninfected mosquitoes.


Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 273-280
Author(s):  
C.D.M. Ishkandar ◽  
N.M. Nawi ◽  
R. Janius ◽  
N. Mazlan ◽  
T.T. Lin

Pesticides have long been used in the cabbage industry to control pest infestation. This study investigated the potential application of low-cost and portable visible shortwave near-infrared spectroscopy for the detection of deltamethrin residue in cabbages. A total of sixty organic cabbage samples were used. The sample was divided into four batches, three batches were sprayed with deltamethrin pesticide whereas the remaining batch was not sprayed (control sample). The first three batches of the cabbages were sprayed with the pesticide at three different concentrations, namely low, medium and high with the values of 0.08, 0.11 and 0.14% volume/volume (v/v), respectively. Spectral data of the cabbage samples were collected using visible shortwave near-infrared (VSNIR) spectrometer with wavelengths range between 200 and 1100 nm. Gas chromatography-electron capture detector (GC-ECD) was used to determine the concentration of deltamethrin residues in the cabbages. Partial least square (PLS) regression method was adopted to investigate the relationship between the spectral data and deltamethrin concentration values. The calibration model produced the values of coefficient of determination (R2 ) and the root mean square error of calibration (RMSEC) of 0.98 and 0.02, respectively. For the prediction model, the values of R2 and the root mean square error of prediction (RMSEP) were 0.94 and 0.04, respectively. These results demonstrated that the proposed spectroscopic measurement is a promising technique for the detection of pesticide at different concentrations in cabbage samples.


Sign in / Sign up

Export Citation Format

Share Document