scholarly journals A Risk-Sensitive Task Offloading Strategy for Edge Computing in Industrial Internet of Things

Author(s):  
Xiaoyu Hao ◽  
Ruohai Zhao ◽  
Tao Yang ◽  
Yulin Hu ◽  
Bo Hu ◽  
...  

Abstract Edge computing has become one of the key enablers for ultra-reliable and low-latency communications in the industrial Internet of Things in the fifth generation communication systems, and is also a promising technology in the future sixth generation communication systems. In this work, we consider the application of edge computing to smart factories for mission-critical task offloading through wireless links. In such scenarios, although high end-to-end delays from the generation to completion of tasks happen with low probability, they may incur severe casualties and property loss, and should be seriously treated. Inspired by the risk management theory widely used in finance, we adopt the Conditional Value at Risk to capture the tail of the delay distribution. An upper bound of the Conditional Value at Risk is derived through analysis of the queues both at the devices and the edge computing servers. We aim to find out the optimal offloading policy taking into consideration both the average and the worst case delay performance of the system. Given that the formulated optimization problem is a non-convex mixed integer non-linear programming problem, a decomposition into sub-problems is performed and a two-stage heuristic algorithm is proposed. Simulation results validate our analysis and indicate that the proposed algorithm can reduce the risk in both the queueing and end-to-end delay.

Author(s):  
Xiaoyu Hao ◽  
Ruohai Zhao ◽  
Tao Yang ◽  
Yulin Hu ◽  
Bo Hu ◽  
...  

AbstractEdge computing has become one of the key enablers for ultra-reliable and low-latency communications in the industrial Internet of Things in the fifth generation communication systems and is also a promising technology in the future sixth generation communication systems. In this work, we consider the application of edge computing to smart factories for mission critical task offloading through wireless links. In such scenarios, although high end-to-end delays from the generation to completion of tasks happen with low probability, they may incur severe casualties and property loss and should be seriously treated. Inspired by the risk management theory widely used in finance, we adopt the Conditional Value at Risk to capture the tail of the delay distribution. An upper bound of the Conditional Value at Risk is derived through analysis of the queues both at the devices and the edge computing servers. We aim to find out the optimal offloading policy taking into consideration both the average and the worst-case delay performance of the system. Given that the formulated optimization problem is a non-convex mixed integer nonlinear programming problem, a decomposition into subproblems is performed and a two-stage heuristic algorithm is proposed. The simulation results validate our analysis and indicate that the proposed algorithm can reduce the risk in both the queueing and end-to-end delay.


2020 ◽  
Author(s):  
Xiaoyu Hao ◽  
Ruohai Zhao ◽  
Tao Yang ◽  
Yulin Hu ◽  
Bo Hu ◽  
...  

Abstract Edge computing has become one of the key enablers for ultra-reliable and low-latency communications in the industrial Internet of Things in the fifth generation communication systems, and is also a promising technology in the future sixth generation communication systems. In this work, we consider the application of edge computing to smart factories for mission-critical task offloading through wireless links. In such scenarios, although high end-to-end delays from the generation to completion of tasks happen with low probability, they may incur severe casualties and property loss, and should be seriously treated. Inspired by the risk management theory widely used in finance, we adopt the Conditional Value at Risk to capture the tail of the delay distribution. An upper bound of the Conditional Value at Risk is derived through analysis of the queues both at the devices and the edge computing servers. We aim to find out the optimal offloading policy taking into consideration both the average and the worst case delay performance of the system. Given that the formulated optimization problem is a non-convex mixed integer non-linear programming problem, a decomposition into sub-problems is performed and a two-stage heuristic algorithm is proposed. Simulation results validate our analysis and indicate that the proposed algorithm can reduce the risk in both the queueing and end-to-end delay.


Author(s):  
Qian You ◽  
Bing Tang

AbstractAs a new form of computing based on the core technology of cloud computing and built on edge infrastructure, edge computing can handle computing-intensive and delay-sensitive tasks. In mobile edge computing (MEC) assisted by 5G technology, offloading computing tasks of edge devices to the edge servers in edge network can effectively reduce delay. Designing a reasonable task offloading strategy in a resource-constrained multi-user and multi-MEC system to meet users’ needs is a challenge issue. In industrial internet of things (IIoT) environment, considering the rapid increase of industrial edge devices and the heterogenous edge servers, a particle swarm optimization (PSO)-based task offloading strategy is proposed to offload tasks from resource-constrained edge devices to edge servers with energy efficiency and low delay style. A multi-objective optimization problem that considers time delay, energy consumption and task execution cost is proposed. The fitness function of the particle represents the total cost of offloading all tasks to different MEC servers. The offloading strategy based on PSO is compared with the genetic algorithm (GA) and the simulated annealing algorithm (SA) through simulation experiments. The experimental results show that the task offloading strategy based on PSO can reduce the delay of the MEC server, balance the energy consumption of the MEC server, and effectively realize the reasonable resource allocation.


2021 ◽  
Vol 17 (7) ◽  
pp. 5010-5011
Author(s):  
Zhaolong Ning ◽  
Edith Ngai ◽  
Ricky Y. K. Kwok ◽  
Mohammad S. Obaidat

Sign in / Sign up

Export Citation Format

Share Document