scholarly journals East Asian summer monsoon enhanced by COVID-19

Author(s):  
Chao He ◽  
Wen Zhou ◽  
Tim Li ◽  
Tianjun Zhou ◽  
Yuhao Wang

Abstract Anthropogenic emissions decreased dramatically during the COVID-19 pandemic, but its possible effect on monsoon is unclear. Based on coupled models participating in the COVID Model Intercomparison Project (COVID-MIP), we show modeling evidence that the East Asian summer monsoon (EASM) is enhanced in terms of both precipitation and circulation, and the amplitude of the forced response reaches about 1/3 of the standard deviation for interannual variability. The response of EASM to COVID-19 is consistent with the response to the removal of all anthropogenic aerosols simulated by atmospheric component models, which confirms the dominant role of the fast response to reduced aerosols. The observational evidence, i.e., the anomalously strong EASM observed in 2020 and 2021, also supports the simulated enhancement of EASM. The essential mechanism for the enhanced EASM in response to COVID-19 is the enhanced zonal thermal contrast between Asian continent and the western North Pacific in the troposphere, particularly at the upper troposphere, due to the reduced aerosol concentration over Asian continent and the associated latent heating feedback. As the enhancement of EASM is a fast response to the reduction in aerosols, the effect of COVID-19 on EASM dampens soon after the rebound of emissions based on the models participating in COVID-MIP.

2016 ◽  
Vol 121 (12) ◽  
pp. 7026-7040 ◽  
Author(s):  
Xiaoning Xie ◽  
Hongli Wang ◽  
Xiaodong Liu ◽  
Jiandong Li ◽  
Zhaosheng Wang ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hongli Wang ◽  
Xiaoning Xie ◽  
Xiaodong Liu

Using outputs from 10 CMIP5 models with fixed sea surface temperature, we investigate the fast response of the East Asian summer monsoon (EASM) and summer precipitation in East China to anthropogenic aerosols. To address this topic, we employ two commonly used EASM indices that can represent zonal and meridional land-sea thermal contrast, respectively. The results reveal that the notion of a weakened EASM in response to increased anthropogenic aerosols is a robust one, as well as decreased precipitation in East China. The ensemble mean of decreased precipitation in the aerosol run was about 6.6% in comparison to the CTL run and could be enlarged to 8.3% by excluding the experiments with the aerosol direct effect only. Convective precipitation was found to be the primary contributor (>80%) to the reduction of total precipitation. The combination of direct and indirect effects of aerosols can decrease solar radiation reaching the Earth’s surface and eventually modulate large-scale EASM circulation and suppress summer precipitation in East China. The uncertainties and discrepancies among the models highlight the complexity of interaction in aerosol-precipitation processes when investigating present and future changes of the EASM.


2015 ◽  
Vol 120 (11) ◽  
pp. 5602-5621 ◽  
Author(s):  
T. J. Wang ◽  
B. L. Zhuang ◽  
S. Li ◽  
J. Liu ◽  
M. Xie ◽  
...  

2020 ◽  
Vol 33 (8) ◽  
pp. 2929-2944 ◽  
Author(s):  
Zhili Wang ◽  
Junyu Mu ◽  
Meilin Yang ◽  
Xiaochao Yu

AbstractThis study examines the mechanisms by which the East Asian summer monsoon (EASM) changes in response to non–East Asian (NEA) anthropogenic aerosol forcing by distinguishing the fast direct atmospheric response and slow ocean-mediated response to forcing using a global aerosol–climate coupled model. The results show that NEA aerosol forcing significantly exacerbates the weakening of the EASM due to local aerosol forcing. The fast response is dominant in the weakening of the EASM and an anomalous precipitation pattern over eastern China resembling the “southern flood and northern drought” pattern in the total response to NEA aerosol forcing. Changes in upper-tropospheric temperature caused by the fast response play a major role in the impact of NEA aerosol forcing on the EASM. Anomalous cooling occurs during summer in the upper troposphere (at ~40°N) over East Asia caused by the fast response. This is due to the combined effects of strong eastward cold advection in the Northern Hemisphere midlatitudes caused by increased aerosol loading in Europe and the resulting change in local meridional heat transport in East Asia. Subsequently, the zonal wind speed changes on either side of the anomalous cooling, and the East Asian subtropical jet shifts equatorward, thereby weakening the EASM. The changes in atmospheric temperature and the local Hadley cell caused by the slow response to NEA aerosol forcing are conducive to strengthening the southwesterly winds over eastern China. Our study suggests the importance of NEA aerosol forcing in driving changes in the EASM on a fast time scale.


2021 ◽  
Vol 414 ◽  
pp. 125477
Author(s):  
Xiaohui Wang ◽  
Kai Liu ◽  
Lixin Zhu ◽  
Changjun Li ◽  
Zhangyu Song ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 116758
Author(s):  
Yanjun Cai ◽  
Xing Cheng ◽  
Le Ma ◽  
Ruixue Mao ◽  
Sebastian F.M. Breitenbach ◽  
...  

2012 ◽  
Vol 25 (20) ◽  
pp. 6975-6988 ◽  
Author(s):  
Jung-Eun Chu ◽  
Saji N. Hameed ◽  
Kyung-Ja Ha

Abstract The hypothesis that regional characteristics of the East Asian summer monsoon (EASM) result from the presence of nonlinear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal time scale is advanced in this study. To examine this hypothesis, the authors undertake the analysis of daily EASM variability using a nonlinear multivariate data classifying algorithm known as self-organizing mapping (SOM). On the basis of various SOM node analyses, four major intraseasonal phases of the EASM are identified. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, strong upper-level jets, weakened monsoonal winds, and cyclonic upper-level vorticity. This mode, related to large rainfall anomalies in southeast China and southern Japan, is identified as the mei-yu–baiu phase. The second node represents a distinct circulation state corresponding to a strengthened subtropical high, monsoonal winds, and anticyclonic upper-level vorticity in southeast Korea, which is identified as the changma phase. The third node is related to copious rain over Korea following changma, which we name the postchangma phase. The fourth node is situated diagonally opposite the changma mode. Because Korea experiences a dry spell associated with this SOM node, it is referred to as the dry-spell phase. The authors also demonstrate that a strong modulation of the changma and dry-spell phases on interannual time scales occurs during El Niño and La Niña years. Results imply that the key to predictability of the EASM on interannual time scales may lie with analysis and exploitation of its nonlinear characteristics.


Sign in / Sign up

Export Citation Format

Share Document