scholarly journals Robust Stability of Discrete-time Singularly Perturbed Systems with Nonlinear Perturbation

Author(s):  
Wei Liu ◽  
Yanyan Wang ◽  
Zhiming Wang

Abstract This paper is concerned with the robust stability and stabilization problems of discrete-time singularly perturbed systems (DTSPSs) with nonlinear perturbations. A proper sufficient condition via the fixed-point principle is proposed to guarantee that the given system is in a standard form. Then, based on the singular perturbation approach, a linear matrix inequality (LMI) based sufficient condition is presented such that the original system is standard and input-to-state stable (ISS) simultaneously. Thus, it can be easily verified for it only depends on the solution of an LMI. After that, for the case where the nominal system is unstable, the problem of designing a control law to make the resulting closed-loop system ISS is addressed. To achieve this, a sufficient condition is proposed via LMI techniques for the purpose of implementation. The criteria presented in this paper are independent of the small parameter and the stability bound can be derived effectively by solving an optimal problem. Finally, the effectiveness of the obtained theoretical results is illustrated by two numerical examples.

2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Asma Ben Rajab ◽  
Nesrine Bahri ◽  
Majda Ltaief

Abstract Many control and observability theories for singularly perturbed systems require the full knowledge of system model parameters exceptionally if the system is considered as black box. To overcome this problem and to obtain an accurate and faithful model, this paper describes a new identification method for discrete-time nonlinear singularly perturbed systems (NLSPS) using the coupled state multimodel representation. The Levenberg–Marquardt algorithm is used to identify not only the submodels parameters but also the perturbation parameter ε. Two cases are considered to identify these systems. The first one supposes that the perturbation parameter ε of the real system is known and thus only the submodels parameters are identified. The second case supposes that this perturbation parameter is unknown and has to be identified with the other submodels parameters. The simulation example demonstrates the effectiveness of the proposed identification.


2014 ◽  
Vol 8 (4) ◽  
pp. 175-180 ◽  
Author(s):  
Adel Tellili ◽  
Nouceyba Abdelkrim ◽  
Bahaa Jaouadi ◽  
Mohamed Naceur Abdelkrim

Abstract This paper deals with the diagnosis of discrete-time singularly perturbed systems presenting two time scales property. Parity space method is considered to generate the fault detection residual. The focus is in two directions. First, we discuss the residual illconditioning caused by the singular perturbation parameter. Then, the use of the slow subsystem is considered to make the fault diagnosis easier. It is shown that the designed diagnostic algorithm based on reduced order model is close to the one synthesized using the full order system. The developed approach aims at reducing the computational load and the ill-conditioning for stiff residual generation problem. Two examples of application are used to demonstrate the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document