scholarly journals SARS-CoV-2 infects human GnRH neurons and tanycytes, disrupting hypothalamic-pituitary hormonal axes

Author(s):  
Vincent Prevot ◽  
Florent Sauve ◽  
Sreekala Nampoothiri ◽  
Daniela Fernandois ◽  
Caio Coelho ◽  
...  

Abstract Neuroinvasion by SARS-CoV-2 is now accepted. To investigate whether low testosterone levels observed in men with severe COVID-19 could be of central origin, we retrospectively analyzed blood samples from 60 male intensive-care patients and explored SARS-CoV-2 brain entry using animal and cellular models as well as adult COVID-19 patient and fetal human brains. Most hypotestosteronemic patients displayed hypogonadotropic hypogonadism or abnormal hypothalamic-pituitary-gonadal axis regulation. Neurons producing gonadotropin-releasing hormone (GnRH), the master molecule controlling fertility, expressed angiotensin-converting enzyme 2 and neuropilin-1, two host-cell factors mediating infection, and were infected and dying in all COVID-19 patient brains. Tanycytes - hypothalamic glia that regulate GnRH secretion - were also infected. Additionally, human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, richly expressed both the above host-cell susceptibility factors and formyl peptide receptor 2, a putative vomeronasal receptor that also appeared involved in SARS-CoV-2 pathogenesis in humans and mice. Finally, a fetal human GnRH cell line expressing all these receptors could be infected by a SARS-CoV-2-like pseudovirus. Together, our findings suggest that GnRH neurons, which may be implicated in brain development and aging in addition to reproduction, are particularly vulnerable to SARS-CoV-2 in both adults and fetuses/newborns, with potentially devastating long-term consequences.

2021 ◽  
Vol 383 (1) ◽  
pp. 387-393
Author(s):  
Madlaina Boillat ◽  
Alan Carleton ◽  
Ivan Rodriguez

Abstract Variations in gene expression patterns represent a powerful source of evolutionary innovation. In a rodent living about 70 million years ago, a genomic accident led an immune formyl peptide receptor (FPR) gene to hijack a vomeronasal receptor regulatory sequence. This gene shuffling event forced an immune pathogen sensor to transition into an olfactory chemoreceptor, which thus moved from sensing the internal world to probing the outside world. We here discuss the evolution of the FPR gene family, the events that led to their neofunctionalization in the vomeronasal organ and the functions of immune and vomeronasal FPRs.


Sign in / Sign up

Export Citation Format

Share Document