gnrh neurons
Recently Published Documents


TOTAL DOCUMENTS

520
(FIVE YEARS 88)

H-INDEX

56
(FIVE YEARS 5)

Endocrinology ◽  
2021 ◽  
Author(s):  
Chie Umatani ◽  
Nagisa Yoshida ◽  
Eri Yamamoto ◽  
Yasuhisa Akazome ◽  
Yasutaka Mori ◽  
...  

Abstract Animals properly perform sexual behaviors by using multiple sensory cues. However, neural mechanisms integrating multiple sensory cues and regulating motivation for sexual behaviors remain unclear. Here, we focused on peptidergic neurons, terminal nerve gonadotropin-releasing hormone (TN-GnRH) neurons, which receive inputs from various sensory systems and co-express neuropeptide FF (NPFF) in addition to GnRH. Our behavioral analyses using knockout medaka of GnRH (gnrh3) and/or NPFF (npff) demonstrated that some sexual behavioral repertoires were ‘delayed’, not disrupted, in gnrh3 and npff single knockout males, while the double knockout appeared to alleviate the significant defects that were observed in single knockouts. We also found anatomical evidence to show that both neuropeptides modulate the sexual behavior-controlling brain areas. Furthermore, we demonstrated that NPFF activates neurons in the preoptic area via indirect pathway, which is considered to induce the increase in motivation for male sexual behaviors. Considering these results, we propose a novel mechanism by which co-existing peptides of the TN-GnRH neurons, NPFF and GnRH3, coordinately modulate certain neuronal circuit for the control of behavioral motivation. Our results may go a long way toward understanding the functional significance of peptidergic neuromodulation in response to sensory information from the external environments.


Endocrinology ◽  
2021 ◽  
Author(s):  
Oline K Rønnekleiv ◽  
Jian Qiu ◽  
Martin J Kelly

Abstract Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to GnRH neurons for the coordinated release of gonadotropins, estrous cyclicity and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are two distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1 ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1 AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1 AVPV/PeN neurons but decreases its expression in Kiss1 ARH neurons. Also, Kiss1 ARH neurons co-express glutamate and Kiss1 AVPV/PeN neurons co-express GABA, both of which are upregulated by E2 in females. Also, Kiss1 ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1 ARH neurons project to and excite the anorexigenic proopiomelanocortin (POMC) neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide (NPY/AgRP) neurons, highlighting their role in regulating feeding behavior. Kiss1 ARH and Kiss1 AVPV/PeN neurons also project to the pre-autonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.


Author(s):  
Giuliana Pellegrino ◽  
Marion Martin ◽  
Cécile Allet ◽  
Tori Lhomme ◽  
Sarah Geller ◽  
...  

2021 ◽  
Author(s):  
Vincent Prevot ◽  
Florent Sauve ◽  
Sreekala Nampoothiri ◽  
Daniela Fernandois ◽  
Caio Coelho ◽  
...  

Abstract Neuroinvasion by SARS-CoV-2 is now accepted. To investigate whether low testosterone levels observed in men with severe COVID-19 could be of central origin, we retrospectively analyzed blood samples from 60 male intensive-care patients and explored SARS-CoV-2 brain entry using animal and cellular models as well as adult COVID-19 patient and fetal human brains. Most hypotestosteronemic patients displayed hypogonadotropic hypogonadism or abnormal hypothalamic-pituitary-gonadal axis regulation. Neurons producing gonadotropin-releasing hormone (GnRH), the master molecule controlling fertility, expressed angiotensin-converting enzyme 2 and neuropilin-1, two host-cell factors mediating infection, and were infected and dying in all COVID-19 patient brains. Tanycytes - hypothalamic glia that regulate GnRH secretion - were also infected. Additionally, human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, richly expressed both the above host-cell susceptibility factors and formyl peptide receptor 2, a putative vomeronasal receptor that also appeared involved in SARS-CoV-2 pathogenesis in humans and mice. Finally, a fetal human GnRH cell line expressing all these receptors could be infected by a SARS-CoV-2-like pseudovirus. Together, our findings suggest that GnRH neurons, which may be implicated in brain development and aging in addition to reproduction, are particularly vulnerable to SARS-CoV-2 in both adults and fetuses/newborns, with potentially devastating long-term consequences.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3460
Author(s):  
Georgios Valsamakis ◽  
Angeliki Arapaki ◽  
Dimitris Balafoutas ◽  
Evangelia Charmandari ◽  
Nikolaos F. Vlahos

Recent studies have shown a rise in precocious puberty, especially in girls. At the same time, childhood obesity due to overnutrition and energy imbalance is rising too. Nutrition and fertility are currently facing major challenges in our societies, and are interconnected. Studies have shown that high-fat and/or high-glycaemic-index diet can cause hypothalamic inflammation and microglial activation. Molecular and animal studies reveal that microglial activation seems to produce and activate prostaglandins, neurotrophic factors activating GnRH (gonadotropin-releasing hormone expressing neurons), thus initiating precocious puberty. GnRH neurons’ mechanisms of excitability are not well understood. In this review, we study the phenomenon of the rise of precocious puberty, we examine the physiology of GnRH neurons, and we review the recent literature regarding the pathophysiological mechanisms that connect diet-induced hypothalamic inflammation and diet-induced phoenixin regulation with precocious puberty.


2021 ◽  
Vol 22 (17) ◽  
pp. 9425
Author(s):  
Roberto Oleari ◽  
Valentina Massa ◽  
Anna Cariboni ◽  
Antonella Lettieri

Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.


Endocrinology ◽  
2021 ◽  
Author(s):  
Margaret A Mohr ◽  
Lourdes A Esparza ◽  
Paige Steffen ◽  
Paul E Micevych ◽  
Alexander S Kauffman

Abstract Kisspeptin, encoded by Kiss1, stimulates GnRH neurons to govern reproduction. In female rodents, estrogen-sensitive kisspeptin neurons in the rostral anteroventral periventricular (AVPV) hypothalamus are thought to mediate estradiol (E2)-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. AVPV kisspeptin neurons co-express estrogen and progesterone receptors (PGR) and are activated during the LH surge. While E2 effects on kisspeptin neurons have been well-studied, progesterone’s regulation of kisspeptin neurons is less understood. Using transgenic mice lacking PGR exclusively in kisspeptin cells (termed KissPRKOs), we previously demonstrated that progesterone action specifically in kisspeptin cells is essential for ovulation and normal fertility. Unlike control females, KissPRKO females did not generate proper LH surges, indicating that PGR signaling in kisspeptin cells is required for proper positive feedback. However, since PGR was knocked out from all kisspeptin neurons in the brain, that study was unable to determine the specific kisspeptin population mediating PGR action on the LH surge. Here, we used targeted Cre-mediated AAV technology to re-introduce PGR selectively into AVPV kisspeptin neurons of adult KissPRKO females, and tested whether this rescues occurrence of the LH surge. We found that targeted upregulation of PGR in kisspeptin neurons exclusively in the AVPV is sufficient to restore proper E2-induced LH surges in KissPRKO females, suggesting that this specific kisspeptin population is a key target of the necessary progesterone action for the surge. These findings further highlight the critical importance of progesterone signaling, along with E2 signaling, in the positive feedback induction of LH surges and ovulation.


2021 ◽  
Vol Volume 15 ◽  
pp. 3499-3508
Author(s):  
Cheng-Xiang Wang ◽  
Yue Zhang ◽  
Qing-Feng Li ◽  
Hong-Liang Sun ◽  
Hai-Ling Chong ◽  
...  

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Charlotte Vanacker ◽  
Richard Anthony Defazio ◽  
Charlene M Sykes ◽  
Suzanne M Moenter

GnRH neurons are the final central neural output regulating fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (KNDy neurons) are considered the main regulator of GnRH output. GnRH and KNDy neurons are surrounded by astrocytes, which can modulate neuronal activity and communicate over distances. Prostaglandin E2 (PGE2), synthesized primarily by astrocytes, increases GnRH neuron activity and downstream pituitary release of luteinizing hormone (LH). We hypothesized GFAP-expressing astrocytes play a role regulating GnRH and/or KNDy neuron activity and LH release. We used adenoassociated viruses to target designer receptor exclusively activated by designer drugs (DREADDs) to GFAP-expressing cells to activate Gq or Gi-mediated signaling. Activating Gq signaling in the preoptic area, near GnRH neurons, but not in the arcuate, increases LH release in vivo and GnRH firing in vitro via a mechanism in part dependent upon PGE2. These data suggest astrocytes can activate GnRH/LH release in a manner independent of KNDy neurons.


Sign in / Sign up

Export Citation Format

Share Document