scholarly journals Multiple domains of the N-formyl peptide receptor are required for high-affinity ligand binding. Construction and analysis of chimeric N-formyl peptide receptors.

1993 ◽  
Vol 268 (24) ◽  
pp. 18167-18175 ◽  
Author(s):  
O. Quehenberger ◽  
E.R. Prossnitz ◽  
S.L. Cavanagh ◽  
C.G. Cochrane ◽  
R.D. Ye
1991 ◽  
Vol 277 (1) ◽  
pp. 67-72 ◽  
Author(s):  
J J Remes ◽  
U E Petäjä-Repo ◽  
H J Rajaniemi

Rat and human neutrophil N-formyl-peptide chemotactic receptors were subjected to glycosidase and proteinase treatments to determine the extent and species differences of glycosylation and the carbohydrate requirement in the high-affinity ligand binding. N-Formyl-Nle-Leu-Phe-Nle-125I-Tyr-Lys was attached to rat and human neutrophils either before or after glycosidase and proteinase treatments, and the labelled receptors were solubilized after glutaraldehyde cross-linking and analysed by SDS/PAGE and autoradiography. Both the rat and human N-formyl-peptide chemotactic receptors contain only N-linked oligosaccharides, as demonstrated by their sensitivity to peptide N-glycosidase F (PNGase F) and resistance to O-glycanase treatment. The N-linked oligosaccharides seem to be of the complex type rather than the high-mannose or hybrid type and lack terminal sialic acid, as demonstrated by their resistance to endoglycosidases D and H and neuraminidase treatments. This sensitivity pattern was similar in both species, and the shift in the molecular size of the receptors to 35-38 kDa after PNGase F treatment occurred through one intermediate product, suggesting that both receptors contain a similar 35-38 kDa polypeptide core with two N-linked complex-type oligosaccharides, the heterogeneity of which is responsible for the species difference in receptor size. Papain treatment alone or followed by PNGase F produced in both species a 33-36 kDa membrane-bound fragment that was still able to bind the ligand, suggesting that the oligosaccharides are located on the approx. 2 kDa papain-cleavable polypeptide fragment of the receptors. The cleavage sites for both papain and PNGase F were hidden in occupied receptors, suggesting a conformational or topographical change in these upon ligand binding. Scatchard analyses and cross-linking experiments demonstrated that carbohydrates are not required for high-affinity ligand binding and that the 33-36 kDa membrane-bound papain fragment of both receptors contains the ligand-binding site.


1993 ◽  
Vol 121 (6) ◽  
pp. 1281-1289 ◽  
Author(s):  
B Johansson ◽  
M P Wymann ◽  
K Holmgren-Peterson ◽  
K E Magnusson

Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc-FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle-Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl-phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist-induced receptor clustering was less apparent after dhcB treatment. To summarize, this work shows that activated N-formyl peptide receptors aggregate and immobilize in the plane of the neutrophil plasma membrane before internalization, a process that is affected, but not significantly reversed, by cytochalasin. The results are consistent with a model where arrested receptors are associated mainly with a cytochalasin-insensitive pool of cytoskeletal elements.


2018 ◽  
Vol 9 (43) ◽  
pp. 8171-8177 ◽  
Author(s):  
Kasipandi Vellaisamy ◽  
Guodong Li ◽  
Wanhe Wang ◽  
Chung-Hang Leung ◽  
Dik-Lung Ma

Formyl peptide receptors play important biological and therapeutic roles in wound repair and inflammatory diseases.


Author(s):  
Elisabeth Weiß ◽  
Katja Schlatterer ◽  
Christian Beck ◽  
Andreas Peschel ◽  
Dorothee Kretschmer

Abstract Background Formyl-peptide receptors (FPRs) are important pattern recognition receptors that sense specific bacterial peptides. Formyl-peptide receptors are highly expressed on neutrophils and monocytes, and their activation promotes the migration of phagocytes to sites of infection. It is currently unknown whether FPRs may also influence subsequent processes such as bacterial phagocytosis and killing. Staphylococcus aureus, especially highly pathogenic community-acquired methicillin-resistant S aureus strains, release high amounts of FPR2 ligands, the phenol-soluble modulins. Methods We demonstrate that FPR activation leads to upregulation of complement receptors 1 and 3 as well as FCγ receptor I on neutrophils and, consequently, increased opsonic phagocytosis of S aureus and other pathogens. Results Increased phagocytosis promotes killing of S aureus and interleukin-8 release by neutrophils. Conclusions We show here for the first time that FPRs govern opsonic phagocytosis. Manipulation of FPR2 activation could open new therapeutic opportunities against bacterial pathogens.


2003 ◽  
Vol 278 (19) ◽  
pp. 17185-17189 ◽  
Author(s):  
Bing-Hao Luo ◽  
Timothy A. Springer ◽  
Junichi Takagi

2004 ◽  
Vol 377 (2) ◽  
pp. 469-477 ◽  
Author(s):  
Marie-Hélène PACLET ◽  
Clare DAVIS ◽  
Peter KOTSONIS ◽  
Jasminka GODOVAC-ZIMMERMANN ◽  
Anthony W. SEGAL ◽  
...  

We investigated the coupling of the fMLP (N-formyl-l-methionyl-l-leucyl-l-phenylalanine; ‘chemotactic peptide’) receptor with phosphorylation of the actin-binding protein l-plastin in neutrophils. Using two-dimensional IEF (isoelectric focusing)/PAGE and MALDI–TOF (matrix-assisted laser desorption ionization–time-of-flight)-MS, l-plastin was identified as a major phosphoprotein in fMLP-stimulated neutrophils whose phosphorylation was dependent on phosphoinositide 3-kinase, PLD (phospholipase D) and PKC (protein kinase C) activity. Two fMLP receptor subtypes were identified in neutrophils, characterized by a distinct sensitivity to fMLP and antagonistic peptides. Both receptor subtypes induced the phosphorylation of l-plastin. l-plastin phosphorylation induced by low-affinity fMLP receptors involves an action of phosphoinositide 3-kinase, PLD and PKC isotypes. In contrast, none of these intermediates are utilized by high-affinity fMLP receptors in the phosphorylation of l-plastin. However, the PKC inhibitor Ro-31-8220 inhibits l-plastin phosphorylation induced by the high-affinity fMLP receptor. Thus, an as yet unknown Ro-31-8220-sensitive kinase regulates l-plastin phosphorylation in response to the high-affinity fMLP receptor. The results suggest a model in which receptor subtypes induce a similar endpoint event through different signal-transduction intermediates. This may be relevant in the context of cell migration in which one receptor subpopulation may become desensitized in a concentration gradient of chemoattractant.


Sign in / Sign up

Export Citation Format

Share Document