IFT20 confers paclitaxel resistance by triggering β-arrestin-1 to modulate ASK1 signaling in breast cancer

Author(s):  
Ni Qiu ◽  
Huan Jin ◽  
Lulu Cui ◽  
Yong-tao Zhan ◽  
Hao-ming Xia ◽  
...  

Abstract Background: System paclitaxel-based chemotherapy is the first-line treatment regimen of defense against breast cancer, but inherent or acquired chemotherapy resistance remains a major obstacle in breast cancer therapy. Elucidating the molecular mechanism of chemoresistance is essential to improve the outcome of patients with breast cancer. Methods: Paclitaxel sensitivity was first evaluated using models of IFT20 deletion and overexpression of breast cancer cells in vitro and in vivo studies to identify the effect of IFT20 on paclitaxel chemoresistance. To delineate the molecular mechanism of IFT20 contributions to paclitaxel chemoresistance, changes in ASK signaling and its downstream JNK cascades expression were quantified using western blots, and the potential involvement of β-arrestin-1 was investigated using co-IP studies. Results: IFT20 is positively associated with shorter relapse-free survival in patients with system paclitaxel-based chemotherapy. High expressed IFT20 in breast cancer cells increases resistance to cell death upon paclitaxel treatment; in contrast, IFT20 knockdown enhances apoptosis in breast cancer cells in response to paclitaxel. Mechanistically, IFT20 triggers β-arrestin-1 to bind with ASK1 and promotes the ubiquitination of ASK1 degradation, leading to attenuating ASK1 signaling and its downstream JNK cascades, which helped cells to escape from cell death during paclitaxel treatment. Conclusion: IFT20 confers to paclitaxel chemoresistance. It interacts with β-arrestin-1 to mediate ubiquitination of ASK1 for feedback inhibition of ASK1/JNK signaling and restrains paclitaxel-induced apoptosis. These findings identify IFT20 as a promising novel target for overcoming paclitaxel resistance in breast cancer.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Tsung-Ching Lai ◽  
Chih-Yeu Fang ◽  
Yi-Hua Jan ◽  
Hsiao-Ling Hsieh ◽  
Yi-Fang Yang ◽  
...  

Abstract Background Chemotherapy is currently one of the most effective treatments for advanced breast cancer. Anti-microtubule agents, including taxanes, eribulin and vinca-alkaloids are one of the primary major anti-breast cancer chemotherapies; however, chemoresistance remains a problem that is difficult to solve. We aimed to discover novel candidate protein targets to combat chemoresistance in breast cancer. Methods A lentiviral shRNA-based high-throughput screening platform was designed and developed to screen the global kinome to find new therapeutic targets in paclitaxel-resistant breast cancer cells. The phenotypes were confirmed with alternative expression in vitro and in vivo. Molecular mechanisms were investigated using global phosphoprotein arrays and expression microarrays. Global microarray analysis was performed to determine TAOK3 and genes that induced paclitaxel resistance. Results A serine/threonine kinase gene, TAOK3, was identified from 724 screened kinase genes. TAOK3 shRNA exhibited the most significant reduction in IC50 values in response to paclitaxel treatment. Ectopic downregulation of TAOK3 resulted in paclitaxel-resistant breast cancer cells sensitize to paclitaxel treatment in vitro and in vivo. The expression of TAOK3 also was correlated to sensitivity to two other anti-microtubule drugs, eribulin and vinorelbine. Our TAOK3-modulated microarray analysis indicated that NF-κB signaling played a major upstream regulation role. TAOK3 inhibitor, CP43, and shRNA of NF-κB both reduced the paclitaxel resistance in TAOK3 overexpressed cells. In clinical microarray databases, high TAOK3 expressed breast cancer patients had poorer prognoses after adjuvant chemotherapy. Conclusions Here we identified TAOK3 overexpression increased anti-microtubule drug resistance through upregulation of NF-κB signaling, which reduced cell death in breast cancer. Therefore, inhibition of the interaction between TAOK3 and NF-κB signaling may have therapeutic implications for breast cancer patients treated with anti-microtubule drugs.


2012 ◽  
Vol 9 (10) ◽  
pp. 881-893 ◽  
Author(s):  
Young Ju Lee ◽  
A Jin Won ◽  
Jaewon Lee ◽  
Jee H. Jung ◽  
Sungpil Yoon ◽  
...  

2020 ◽  
Vol 173 ◽  
pp. 113724 ◽  
Author(s):  
Damu Sunilkumar ◽  
G. Drishya ◽  
Aneesh Chandrasekharan ◽  
Sanu K. Shaji ◽  
Chinchu Bose ◽  
...  

Nanoscale ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 3644-3653
Author(s):  
Hieu T. M. Nguyen ◽  
Nitesh Katta ◽  
Jessica A. Widman ◽  
Eri Takematsu ◽  
Xu Feng ◽  
...  

Laser nanobubbles induce dendritic cell activation in breast cancer cells.


2021 ◽  
pp. 116112
Author(s):  
Chandrima Gain ◽  
Aparna Sarkar ◽  
Shrea Bural ◽  
Moumita Rakshit ◽  
Jeet Banerjee ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiraporn Kantapan ◽  
Siwaphon Paksee ◽  
Aphidet Duangya ◽  
Padchanee Sangthong ◽  
Sittiruk Roytrakul ◽  
...  

Abstract Background Radioresistance can pose a significant obstacle to the effective treatment of breast cancers. Epithelial–mesenchymal transition (EMT) is a critical step in the acquisition of stem cell traits and radioresistance. Here, we investigated whether Maprang seed extract (MPSE), a gallotannin-rich extract of seed from Bouea macrophylla Griffith, could inhibit the radiation-induced EMT process and enhance the radiosensitivity of breast cancer cells. Methods Breast cancer cells were pre-treated with MPSE before irradiation (IR), the radiosensitizing activity of MPSE was assessed using the colony formation assay. Radiation-induced EMT and stemness phenotype were identified using breast cancer stem cells (CSCs) marker (CD24−/low/CD44+) and mammosphere formation assay. Cell motility was determined via the wound healing assay and transwell migration. Radiation-induced cell death was assessed via the apoptosis assay and SA-β-galactosidase staining for cellular senescence. CSCs- and EMT-related genes were confirmed by real-time PCR (qPCR) and Western blotting. Results Pre-treated with MPSE before irradiation could reduce the clonogenic activity and enhance radiosensitivity of breast cancer cell lines with sensitization enhancement ratios (SERs) of 2.33 and 1.35 for MCF7 and MDA-MB231cells, respectively. Pretreatment of breast cancer cells followed by IR resulted in an increased level of DNA damage maker (γ-H2A histone family member) and enhanced radiation-induced cell death. Irradiation induced EMT process, which displayed a significant EMT phenotype with a down-regulated epithelial marker E-cadherin and up-regulated mesenchymal marker vimentin in comparison with untreated breast cancer cells. Notably, we observed that pretreatment with MPSE attenuated the radiation-induced EMT process and decrease some stemness-like properties characterized by mammosphere formation and the CSC marker. Furthermore, pretreatment with MPSE attenuated the radiation-induced activation of the pro-survival pathway by decrease the expression of phosphorylation of ERK and AKT and sensitized breast cancer cells to radiation. Conclusion MPSE enhanced the radiosensitivity of breast cancer cells by enhancing IR-induced DNA damage and cell death, and attenuating the IR-induced EMT process and stemness phenotype via targeting survival pathways PI3K/AKT and MAPK in irradiated breast cancer cells. Our findings describe a novel strategy for increasing the efficacy of radiotherapy for breast cancer patients using a safer and low-cost natural product, MPSE.


2008 ◽  
Vol 10 (S2) ◽  
Author(s):  
CF Méndez-Catalá ◽  
I Cherhukhin ◽  
F Docquier ◽  
D Farrar ◽  
E Pugacheva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document