Morphology of the Pattern of Branching of the Aortic Arch in Syrian Hamsters (Mesocricetus Auratus)

Author(s):  
Jamal Nourinezhad ◽  
Reza Ranjbar ◽  
Vahid Rostamizadeh ◽  
Marzieh Norouzi Tabrizinejad ◽  
Abdulaziz Hallak ◽  
...  

Abstract The branching patterns of the aortic arches of 28 adult male and female Syrian hamsters (SH) were thoroughly examined under a stereomicroscope for the first time by using latex injection and corrosion casting to determine their general arrangements and morphological variations as well as their differences and similarities to other rodents and rabbits. Three major arteries, namely, the brachiocephalic trunk (BC), left common carotid artery (CC) and left subclavian artery (SA), originating from the aortic arch (AR), were uniformly noted in SH. The BC was consistently divided into the right SA and the right CA. SA in SH normally releases the internal thoracic, deep cervical, dorsal scapular, vertebral, superficial cervical and supreme intercostal arteries. The costocervical trunk typically consisted of supreme intercostal and internal thoracic arteries and a common trunk for dorsal scapular and deep cervical arteries. To comprehend the comparative morphology of the pattern of branching of AR more completely, our results were compared with previous studies in rodents and rabbits. (1) The general morphology of the great arteries from AR in SH was similar to that in mole rats, rats, mice, porcupines, and gerbils but was essentially different from that in rabbits, guinea pigs, red squirrels, ground squirrels, pacas and chinchillas. (2) The typical pattern of the branching of the subclavian arteries in SH was similar to that in guinea pigs, rats, and rabbits but was different from that of the reported rodents regardless of the origins of the bronchoesophageal and internal thoracic arteries and the composition of the costocervical trunk.

2011 ◽  
Vol 56 (No. 9) ◽  
pp. 469-472
Author(s):  
A. Aydin ◽  
ZE Ozkan ◽  
S. Yilmaz ◽  
R. Ilgun

   In this study, the aim was to investigate the anatomy of the aortic arch in ground squirrels (Spermophilus citellus). Five ground squirrels were investigated. The materials were carefully dissected and the arterial patterns of arteries originating from the aortic arch were examined. The brachiocephalic trunk and the left subclavian artery were separated from the aortic arch. The brachiocephalic trunk first gave the left common carotid artery, and then the right subclavian and common carotid artery detached from it. In all the animals examined, at the cranial thoracic entrance and after leaving from this entrance, similar branches arising from the left and right subclavian arteries were the common branch of the internal thoracic artery and the intercostal suprema artery, separate branches as the vertebral and descending scapular arteries and a common branch of the cervical superficial, the cervical profund, the suprascapular arteries and the spinal ramus. After separation of these branches, the continuation of the artery gave the external thoracic artery on the external face of the thoracic cavity and then formed the axillar artery. The axillary artery separated into the subscapular and the brachial arteries. In conclusion, the pattern of arteries originating from the aortic arch and the branches of these arteries were partially similar to what has been observed in red squirrels, and thus differ from other rodents and domestic mammals.  


ISRN Anatomy ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Virendra Budhiraja ◽  
Rakhi Rastogi ◽  
Vaishali Jain ◽  
Vishal Bankwar ◽  
Shiv Raghuwanshi

Variations of the branches of aortic arch are due to alteration in the development of certain branchial arch arteries during embryonic period. Knowledge of these variations is important during aortic instrumentation, thoracic, and neck surgeries. In the present study we observed these variations in fifty-two cadavers from Indian populations. In thirty-three (63.5%) cadavers, the aortic arch showed classical branching pattern which includes brachiocephalic trunk, left common carotid artery, and left subclavian artery. In nineteen (36.5%) cadavers it showed variations in the branching pattern, which include the two branches, namely, left subclavian artery and a common trunk in 19.2% cases, four branches, namely, brachiocephalic trunk, left common carotid artery, left vertebral artery, and left subclavian artery in 15.3% cases, and the three branches, namely, common trunk, left vertebral artery, and left subclavian artery in 1.9% cases.


2014 ◽  
Vol 27 (4) ◽  
pp. 234-236
Author(s):  
Agnieszka Mocarska ◽  
Miroslaw Szylejko ◽  
Elzbieta Staroslawska ◽  
Franciszek Burdan

Abstract The aortic arch usually gives off three major arterial branches: the brachiocephalic trunk, the left common carotid artery and the left subclavian artery. The most frequently occurring developmental variations of arterial trunks origins are a joined brachiocephalic and left common carotid artery origin, the left vertebral artery branching from the aortic arch, a double aortic arch, and a change of sequence of branching arteries. The current report presents the rare asymptomatic situation of the right subclavian artery originating as the last individual branching from the aortic arch. This abnormality was accidentally discovered in a computed tomography examination of a 69-year old male patient. The examination showed that the artery went towards the neck posteriorly from the trachea. The anatomical anomaly was interpreted as being an arteria lusoria.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
David Mazensky ◽  
Eva Petrovova ◽  
Jan Danko

The aim of this study was to describe the possible variations in the connection between the internal venous vertebral system and the cranial vena cava in rabbit using corrosion technique. The study was carried out on 40 adult New Zealand white rabbits. The venous system was injected by using Batson's corrosion casting kit number 17. We found the connection between the internal venous vertebral system and the cranial vena cava by means of the vertebral veins and the right azygos vein. The vertebral vein was present as independent tributary in 36 cases (90%). In the rest of the cases, it was found as being double, being triple, or forming a common trunk with other veins. The azygos vein was present as independent tributary of the cranial vena cava in 39 cases (97.5%). We found also a common trunk formed by the junction of the deep cervical vein, the right vertebral vein, and the azygos vein in one case (2.5%). The azygos vein received 6, 7, 8, or 9 pairs of dorsal intercostal veins. Documenting the anatomical variations in the rabbit will aid in the planning of future experimental studies and determining the clinical relevance on such studies.


2013 ◽  
Vol 19 (3) ◽  
pp. 154-159 ◽  
Author(s):  
A.M. Manole ◽  
D.M. Iliescu ◽  
A. Rusali ◽  
P. Bordei

Abstract Our study was conducted by the evaluation of angioCT’s performed on a GE LightSpeed VCT64 Slice CT Scanner. The measurements were performed on the aortic arch at the following levels: at the origin of the aorta, the middle part of the ascending aorta, prior to the origin of the brachiocephalic arterial trunk and after the origin of the left subclavian artery. We measured the caliber of the aortic arch arteries and the data are correlated and reported by gender. The diameter of the ascending aorta was between 27 to 28.9 mm in females and in males from 25.8 to 37.6 mm. The diameter of the aorta within the middle segment of the ascending part was between 28-30.2 mm in females and in males from 26.1 to 34.6. The diameter of the aortic arch prior to the origin of the brachiocephalic arterial trunk was between 26.4 to 29.4 mm in females and in males from 25.8 to 37.5 mm. The diameter of the aortic arch after the origin of the left subclavian artery was in a range of 20.4 to 28.4 mm, which corresponds to the limits found in males while in females the aortic diameter was between 21.3 to 24.1 mm. The brachiocephalic trunk diameters were 8.3 to 15.5 mm in females and in males was 9.1 to 14.5 mm. The right common carotid artery had a diameter of 4-8 mm diameter in males and in females ranged from 4.7 to 5.5 mm. The right subclavian artery showed a caliber of 5.7 to 7.5 mm in females and in males from 5.9 to 10.1. The left common carotid artery diameter was 4.6 to 5.7 mm in females and males the diameter was between 5.2 to 7.4 mm. The left subclavian artery had a diameter of 6-10 mm in females and in males ranged from 7.7 to 12.8 mm. We found that the distance between the ascending part of the aorta and the descending segment ranged from 33.3 to 38.5 mm in females and in males from 40 to 68.6 mm. We measured the distance that exists at the crossing of the aortic arch with the left branch of the pulmonary trunk, finding that in females this distance is 3 to 10.3 mm and in males from 3 to 12.5 mm.


2013 ◽  
Vol 19 (2) ◽  
pp. 67-73 ◽  
Author(s):  
A.M. Manole ◽  
D.M. Iliescu ◽  
R. Baz ◽  
P. Bordei

Abstract Our study was performed on 228 cases by dissection, by plastic injection followed by corrosion or dissection and by simple and CT angiography study. Each morphological aspect was assessed on a different numbers of cases, as long as the same case could not provide data on all studied elements. We assessed: the number of branches that originate from the aortic arch, the level of origin and the morphological type of the aortic arch. In terms of number of branches emerging from the aortic arch, most commonly are three branches, in 48.48% of cases, describing them 3 variations: separation of the three classical branches in 45,96% of cases, in 1.51% of cases the left common carotid artery emerged from the brachiocephalic trunk while the other two branches being represented by a vertebral artery and the left subclavian and in 1.01% by the right subclavian artery with retroesophageal traject, by a bicarotid arterial trunk and the left subclavian artery. In 28.70% of the cases were four branches, as follows: in 13.13% of cases the fourth branch was represented by the left vertebral artery, in 7.07% of cases there was the inferior thyroid artery, in 4.04% of cases the brachiocephalic arterial trunk was missing and the right subclavian artery originate from the aortic arch and presented a retroesophageal traject, in 3.03% of cases the fourth artery was the ascending cervical and in 1.51% of cases all four arteries had their origins in the aortic arch with no brachiocephalic trunk. In 22.73% of cases from the aortic arch originated only two branches: in 19.70% of cases the left common carotid originated in the brachiocephalic trunk, so the second branch was the left subclavian and in 3.03% of the cases there were two brachiocephalic trunks. Regarding the level of origin from the aortic arch, we found that only the brachiocephalic arterial trunk showed versions of origin: in 64 61% of the cases the brachiocephalic trunk had its origin in the horizontal segment of the aortic arch, in 21.54% of cases the origin was located at the limit between the ascending and horizontal segments and vin 12.31% of cases the origin was from the ascending segment of the aortic arch. In only 1.54% of the cases the left subclavian artery originated from the descending segment of the aortic arch


2018 ◽  
Vol 46 (1) ◽  
pp. 8
Author(s):  
Radan Elvis Matias de Oliveira ◽  
Hélio Norberto De Araújo Júnior ◽  
Herson Da Silva Costa ◽  
Gleidson Benevides De Oliveira ◽  
Carlos Eduardo Bezerra De Moura ◽  
...  

Background: Gerbils (Meriones unguiculatus) are rodents belonging to the Muridae family. Recently, breeding of this species as pets has increased significantly. Animal models are being investigated to study diseases related to the human aortic arch. Despite the importance of the aortic arch in maintaining homeostasis, there is limited data available regarding its morphology in gerbils. This study was performed with the objective of describing the collateral branches of the aortic arch in this animal to establish a standard model and thus contribute to future research on cardiovascular diseases in humans.Materials, Methods & Results: This study used 20 male specimens from previous studies that were frozen and stored at the Laboratory of Veterinary Anatomy of the Federal Rural University of the Semi-Arid Region. After thawing the animals, the thoracic cavity was opened for aortic cannulation. The vascular system was washed using saline solution and Neoprene latex stained with red pigment was injected. Subsequently, the animals were fixed in 10% formaldehyde and were dissected and analyzed 72 h later. The arrangement of the collateral branches of the aortic arch in gerbils was analyzed in all animals. The brachiocephalic trunk, the left common carotid, and the left subclavian artery were observed to originate as collateral branches. The brachiocephalic trunk bifurcated into the right common carotid and the right subclavian arteries. The right and the left subclavian arteries branched into the vertebral artery, the internal thoracic artery, the superficial cervical artery, the costocervical trunk, and the axillary artery.Discussion: Several studies reported in the literature describe the collateral branches of the aortic arch in domestic and wild mammalian species. These studies examined the main arteries that originate directly from the aortic arch and their respective branches, and classified the different anatomical variants of the aortic arch in each species. Three different arrangements have been commonly described. The first type corresponds only to the brachiocephalic artery originating from the aortic arch. The right and the left common carotid arteries and the right and the left subclavian arteries originate from this brachiocephalic artery. This type has already been described in the laboratory rat, catingueiro-deer, cattle, and horses. The second type is characterized by the presence of 2 arteries - the brachiocephalic trunk and the left subclavian artery. The right and the left common carotid arteries and the right subclavian artery originate from the brachiocephalic trunk. This arrangement has been reported in most species already studied such as rodents including the paca, chinchilla, guinea pig, mocó, nutria and the preá. The third type of vascular arrangement is observed in the gerbil. In this species, 3 collateral arteries originate from the aortic arch (the brachiocephalic trunk, the left common carotid, and the left subclavian artery). The right common carotid and the right subclavian artery originate from the brachiocephalic trunk. This vascular model has been described in the manatee, in humans, mice, sauim, and the monkey-nail. Thus, we concluded that the branching pattern of the aortic arch of the gerbil was characterized by the brachiocephalic trunk, the left common carotid, and the left subclavian artery, as has been described in mice, the manatee, monkey-nail, sauim, and humans. Based on these morphological characteristics, gerbils could serve as potential experimental models to study diseases related to the human aortic arch.


2011 ◽  
Vol 56 (No. 3) ◽  
pp. 131-134 ◽  
Author(s):  
A. Aydin

This study had the aim of investigating the anatomy of the aortic arch in squirrels (Sciurus vulgaris). Ten squirrels were studied. The materials were carefully dissected and the arterial patterns of arteries originating from the aortic arch were examined. The brachiocephalic trunk and the left subclavian artery were detached from the aortic arch. The brachiocephalic trunk first gave the left common carotid artery, and then detached to the right subclavian and common carotid artery. In all the examined materials, the left and right subclavian arteries gave branches that were similar after leaving the thoracic cavity from the cranial thoracic entrance. But while the whole branches of the the right subclavian artery were arising from almost the same point the left subclavian artery gave these branches in a definite order, and the branches that separated were the following: the internal thoracic artery, the intercostal suprema artery, the ramus spinalis, the vertebral artery and the descending scapular artery. It also gave the common branch formed by the junction of three of the cervical superficial, the cevical profund and the suprascapular arteries. After the separation of these branches, continuation of the artery gave the external thoracic artery on the external face of the thoracic cavity and then formed the axillar artery. The axillary artery separated into the subscapular and the brachial arteries. Thus, the arteries originating from the aortic arch and the branches of these arteries are different from other rodents and from domestic mammals.


2013 ◽  
Vol 58 (No. 7) ◽  
pp. 373-376 ◽  
Author(s):  
A. Aydin ◽  
ZE Ozkan ◽  
R. Ilgun

In this study, the aim was to investigate the anatomy of the aortic arch arteries in mole-rats (Spalax leucodon). Six adult mole-rats were used for this purpose. Coloured latex was injected into the left ventriculus of the hearts of all animals. The materials were carefully dissected and the arterial patterns of arteries originating from the aortic arch were examined. The brachiocephalic trunk, the left common carotid and the left subclavian arteries were detached from the aortic arch. The brachiocephalic trunk separated into the right subclavian and common carotid arteries. The branches separating from the subclavian arteries were on the right, the common branch giving the profund cervical, the internal thoracic, and the costocervical trunk, and on the left the internal thoracic and the costocervical trunk were in the common root and the profund cervical artery was independent and on both sides after giving the common branch of the superficial servical and the external thoracic artery. This continued as the axillary artery which was then separated into the subscapular and the brachial arteries. Thus, the arteries originating from the aortic arch and the branches of these arteries were found to be different from other rodents and domestic mammals.  


2016 ◽  
Vol 2 (3) ◽  
pp. 24-27
Author(s):  
Rashmi N Gitte ◽  
Chenna Reddy Ganji ◽  
Vishal M Salve

In human beings the most common branching pattern of the aortic arch was its division into three great vessels ie the brachiocephalic trunk, left common carotid artery and the subclavian artery. The vertebral arteries arise from the superior aspect of the first part of the subclavian artery. In present case, a left vertebral artery arose from the aortic arch as fourth branch was found. The diameter of left vertebral artery at its origin was 6 mm as compared to the right vertebral artery, which has diameter of 3.5 mm at its origin. In this case left sixth dorsal intersegmental artery might have persisted as first part of vertebral artery hence left vertebral artery arising from arch of aorta. Knowledge of the variations in branching pattern of the aortic arch is important in the diagnosis of intracranial aneurysm after subarachnoid haemorrhage.J. Biomed. Sci. 2015, 2(3):21-23.


Sign in / Sign up

Export Citation Format

Share Document