scholarly journals G-domain prediction across the diversity of G protein families

Author(s):  
Hiral Sanghavi ◽  
Richa Rashmi ◽  
Anirban Dasgupta ◽  
Sharmistha Majumdar

Abstract Guanine nucleotide binding proteins are characterized by a structurally and mechanistically conserved GTP-binding domain (G domain), indispensable for binding GTP. The G domain comprises five adjacent consensus motifs called G boxes, which are separated by amino acid spacers of different lengths. Several G proteins, discovered over time, are characterized by diverse function and sequence. This sequence diversity is also observed in the G box motifs (specifically the G5 box) as well as the inter-G box spacer length. The Spacers and Mismatch Algorithm (SMA) introduced in this study can predict G-domains in a given protein sequence, based on user-specified constraints for approximate G-box patterns and inter-box gaps in each G protein family. The SMA parameters can be customized as more G proteins are discovered and characterized structurally. Family-specific G box motifs including the less characterized G5 box were predicted with higher accuracy. Overall, our analysis suggests the possible classification of G protein families based on family-specific G box sequences and lengths of inter-G box spacers. SMA can be implemented via a web-based server at https://labs.iitgn.ac.in/datascience/gboxes/

Physiology ◽  
1989 ◽  
Vol 4 (2) ◽  
pp. 53-56 ◽  
Author(s):  
Y Maruyama

Exocytosis can be quantified by measuring changes in membrane capacitance in single internally perfused cells. Exocytosis is controlled by guanine nucleotide-binding proteins (G proteins) acting as key signal transducers. Different G proteins mediate receptor signaling and secretory granule-membrane fusion.


1993 ◽  
Vol 85 (4) ◽  
pp. 393-399 ◽  
Author(s):  
A. Ferro ◽  
C. Plumpton ◽  
M. J. Brown

1. Guanine nucleotide-binding proteins (G-proteins) play a central role in signal transduction between a wide variety of cell-surface receptors and intracellular second messenger systems. Recently, we and others have demonstrated that cross-regulation can occur between a variety of G-protein-linked receptors in human heart. Chronic β1-adrenoceptor blockade gives rise to sensitization of β2-adrenoceptor and of 5HT4-receptor responses, both of which are mediated via stimulation of adenylate cyclase through stimulatory G-proteins (Gs), and also gives rise to desensit-ization of muscarinic M2-receptor responses, which inhibit adenylate cyclase through inhibitory G-proteins (Gi). 2. In order to investigate whether these effects are due to quantitative changes in cardiac G-protein isoforms, we measured their abundance in right atrial appendage from patients taking or not taking β1-adrenoceptor antagonists, by immunoblotting. 3. Samples of right atrial appendage homogenate were subjected to SDS/PAGE, and proteins were electroblotted on to nitrocellulose membranes. These were then probed with specific anti-G protein anti-sera, and binding was revealed by means of a secondary antibody labelled with alkaline phosphatase and using a chromogenic substrate. The resulting bands were quantified by laser densitometry. 4. No quantitative differences were detected, between these two groups of patients, in the amounts of α-subunit of ‘long’ or ‘short’ Gs isoforms (GsαL and GsαS), or in the amounts of Gi 1 + 2 α-subunit (Giα1 + 2). Nor was any difference found in the abundance of the β-subunit of G-proteins. No ‘other’ G-protein (Go) was detectable in these samples by immunoblotting. 5. We conclude that the phenomenon of receptor cross-regulation which we have previously observed in human right atrial appendage is unlikely to be explained by quantitative changes at the G-protein level.


1988 ◽  
Vol 256 (2) ◽  
pp. 649-656 ◽  
Author(s):  
I Mullaney ◽  
A I Magee ◽  
C G Unson ◽  
G Milligan

Incubation of the neuroblastoma x glioma hybrid cell line NG108-15 in tissue culture with dibutyryl cyclic AMP (1 mM) for up to 8 days produced a morphological differentiation of the cells, during which they extended neurite-like processes. Pertussis-toxin-catalysed ADP-ribosylation indicated that amounts of guanine-nucleotide-binding proteins (G-proteins), which are substrates for this toxin, were approximately doubled in membranes from the ‘differentiated’ cells in comparison with the control cells. Immunoblotting of membranes derived from either untreated or dibutyryl cyclic AMP-treated cells with anti-peptide antisera specific for the alpha subunits of the pertussis-toxin-sensitive G-proteins Gi and Go demonstrated that amounts of these G-proteins were reciprocally modulated during the differentiation process. In comparison with the untreated cells, the amount of Gi in the ‘differentiated’ cells was decreased, whereas the amount of Go was substantially increased. Stimulation of high-affinity GTPase activity in response to opioid peptides, which in this cell line interact with an opioid receptor of the delta subclass, was much decreased, and inhibition of adenylate cyclase activity was almost entirely attenuated in the ‘differentiated’-cell membranes in comparison with membranes of untreated cells. Opioid receptor number was also decreased in membranes of the dibutyryl cyclic AMP-treated cells in comparison with the control cells. These data demonstrate that relatively small changes in the observed pattern of pertussis-toxin-catalysed ADP-ribosylation of membranes can mask more dramatic alterations in amounts of the individual pertussis-toxin-sensitive G-proteins, and further demonstrate the importance of methodologies able to discriminate between the different gene products.


1990 ◽  
Vol 267 (3) ◽  
pp. 795-802 ◽  
Author(s):  
R Seifert ◽  
G Schultz ◽  
M Richter-Freund ◽  
J Metzger ◽  
K H Wiesmüller ◽  
...  

Upon exposure to the bacterial chemotactic peptide fMet-Leu-Phe, human neutrophils release lysozyme and generate superoxide anions (O2.-). The synthetic lipoamino acid N-palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-(R)-cysteine (Pam3Cys), which is derived from the N-terminus of bacterial lipoprotein, when attached to Ser-(Lys)4 [giving Pam3Cys-Ser-(Lys)4], activated O2.- formation and lysozyme release in human neutrophils with an effectiveness amounting to about 15% of that of fMet-Leu-Phe. Palmitic acid, muramyl dipeptide, lipopolysaccharide and the lipopeptides Pam3Cys-Ala-Gly, Pam3Cys-Ser-Gly, Pam3Cys-Ser, Pam3Cys-OMe and Pam3Cys-OH did not activate O2.- formation. Pertussis toxin, which ADP-ribosylates guanine-nucleotide-binding proteins (G-proteins) and functionally uncouples formyl peptide receptors from G-proteins, prevented activation of O2.- formation by fMet-Leu-Phe and inhibited Pam3Cys-Ser-(Lys)4-induced O2.- formation by 85%. Lipopeptide-induced exocytosis was pertussis-toxin-insensitive. O2.- formation induced by Pam3Cys-Ser-(Lys)4 and fMet-Leu-Phe was enhanced by cytochalasin B, by a phorbol ester and by a diacylglycerol kinase inhibitor. Addition of activators of adenylate cyclase and removal of extracellular Ca2+ inhibited O2.- formation by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 to different extents. Pam3Cys-Ser-(Lys)4 synergistically enhanced fMet-Leu-Phe-induced O2.- formation and primed neutrophils to respond to the chemotactic peptide at non-stimulatory concentrations. Our data suggest the following. (1) Pam3Cys-Ser-(Lys)4 activates neutrophils through G-proteins, involving pertussis-toxin-sensitive and -insensitive processes. (2) The signal transduction pathways activated by fMet-Leu-Phe and Pam3Cys-Ser-(Lys)4 are similar but not identical. (3) In inflammatory processes, bacterial lipoproteins and chemotactic peptides may interact synergistically to activate O2.- formation, leading to enhanced bactericidal activity.


1989 ◽  
Vol 262 (2) ◽  
pp. 403-408 ◽  
Author(s):  
F M Mitchell ◽  
S L Griffiths ◽  
E D Saggerson ◽  
M D Houslay ◽  
J T Knowler ◽  
...  

Considerable debate has focused on the molecular identity of the guanine-nucleotide-binding proteins (G-proteins) in adipose tissue which can be detected following pertussis-toxin-catalysed ADP-ribosylation [Rapiejko, Northup, Evans, Brown & Malbon (1986) Biochem. J. 240, 35-40; Hinsch, Rosenthal, Spicher, Binder, Gausepohl, Frank, Schultz & Joost (1988) FEBS Lett. 238, 191-196]. We have used a panel of selective anti-peptide antisera which are able to discriminate between the different pertussis-toxin-sensitive G-proteins to assess which of these are expressed in rat adipose tissue. We demonstrate that plasma membranes of rat white adipocytes contain alpha subunits corresponding to each of Gi1, Gi2 and Gi3. Furthermore, using synthetic oligonucleotides complimentary to unique regions of each of the three polypeptides, we demonstrate that the mRNAs for the three G-protein alpha subunits can also be detected in adipose tissue.


1989 ◽  
Vol 123 (2) ◽  
pp. R5-R7 ◽  
Author(s):  
M. Zaidi ◽  
A. Patchell ◽  
H.K. Datta ◽  
I. MacIntyre

ABSTRACT The propensity of ionic lithium to interfere with the coupling of receptors to guanine nucleotide binding proteins (G-proteins) has only recently been investigated using rat cortical membranes. In the present study we have used intact isolated osteoclasts to investigate lithium-induced uncoupling of the receptor-mediated actions of calcitonin. All actions of calcitonin on the osteoclast were abolished by ionic lithium. We believe that the cation prevents signal transduction by inhibiting G protein-receptor interaction, the first step in intracellular signalling.


Sign in / Sign up

Export Citation Format

Share Document