scholarly journals Neural Substrates Associated With Fatigue Symptom In Fibromyalgia

Author(s):  
Hung-Yu Liu ◽  
Pei-Lin Lee ◽  
Kun-Hsien Chou ◽  
Yen-Feng Wang ◽  
Shih-Pin Chen ◽  
...  

Abstract Many patients with fibromyalgia (FM) experience fatigue, but the associated biological mechanisms have not been delineated. We aimed to investigate the neural signatures associated with fatigue severity in patients with FM using MRI. We consecutively recruited 138 patients with FM and collected their clinical profiles and brain-MRI data. We categorized the patients into 3 groups based on their fatigue severity. Using voxel-based morphometry analysis and trend analysis, we first identified neural structures showing volumetric changes associated with fatigue severity, and further explored their seed-to-voxel structural covariance networks (SCNs). Results showed decreased bilateral thalamic volumes were associated with higher severity of fatigue. There was a more widespread distribution of the thalamic SCNs to the frontal, parietal, subcortical, and limbic regions in patients with higher fatigue severity. In addition, increased right inferior temporal cortex volumes were associated with higher severity of fatigue. The right inferior temporal seed showed more SCNs distributions over the temporal cortex and a higher strength of SCNs to the bilateral occipital cortex in patients with higher fatigue severity. The thalamus and the right inferior temporal cortex as well as their altered interactions with cortical and subcortical regions comprise the neural signatures of fatigue in FM.

2001 ◽  
Vol 13 (4) ◽  
pp. 430-443 ◽  
Author(s):  
Jon S. Simons ◽  
Kim S. Graham ◽  
Adrian M. Owen ◽  
Karalyn Patterson ◽  
John R. Hodges

Previous studies have suggested differences in the neural substrates of recognition memory when the contributions of perceptual and semantic information are manipulated. In a within-subjects design PET study, we investigated the neural correlates of the following factors: material type (objects or faces), semantic knowledge (familiar or unfamiliar items), and perceptual similarity at study and test (identical or different pictures). There was consistent material-specific lateralization in frontal and temporal lobe regions when the retrieval of different types of nonverbal stimuli was compared, with objects activating bilateral areas and faces preferentially activating the right hemisphere. Retrieval of memories for nameable, familiar items was associated with increased activation in the left ventrolateral prefrontal cortex, while memory for unfamiliar items involved occipital regions. Recognition memory for different pictures of the same item at study and test produced blood flow increase in left inferior temporal cortex. These results have implications for our understanding of the neural correlates of perceptual and semantic contributions to recognition memory.


2020 ◽  
Vol 7 ◽  
pp. 2329048X2096617
Author(s):  
Xinran Maria Xiang ◽  
Rachel Evans ◽  
Jesus Lovera ◽  
Rashmi Rao

Although pediatric myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease is increasingly well-recognized, its full clinical spectrum is still being defined. Cortical encephalitis is emerging as a distinct clinico-radiologic syndrome of adult MOG antibody-associated disease. We describe a 12-year-old girl who presented with new onset seizures and left-sided hemiparesis. Brain MRI showed edema of the right temporal-parietal-occipital cortex with associated focal leptomeningeal enhancement. Patient received high-dose corticosteroids and 21 days of acyclovir despite negative infectious work-up due to the focal nature of encephalitis. Patient remained seizure-free for 20 months before presenting with new right hemiclonic seizures with right-sided hemiparesis and edema of the left temporal-parietal cortex with associated leptomeningeal enhancement. Patient’s MOG antibody titer was 1:40. She completed high-dose corticosteroids and intravenous immunoglobulin. Our patient highlights the importance of MOG antibody testing in pediatric focal cortical encephalitis to avoid unnecessary anti-viral agents and provide more appropriate immunotherapy and a more informed prognosis.


2013 ◽  
Vol 119 (5) ◽  
pp. 1125-1128 ◽  
Author(s):  
Ester Ponzetto ◽  
Marco Vinetti ◽  
Cécile Grandin ◽  
Thierry Duprez ◽  
Vincent van Pesch ◽  
...  

The authors describe a rare case of central auditory dysfunction induced by cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). A 55-year-old woman who was admitted after aneurysmal SAH developed cerebral vasospasm on Day 3 affecting mainly the right middle cerebral artery (MCA) and partly the left MCA. The vasospasm became refractory to conventional therapy and was ultimately improved by intraarterial infusion of nimodipine in the right MCA and angioplasty. Severe auditory dysfunction was apparent from Day 10 as the patient was not reactive to speech or environmental sounds. Brain MRI on Day 17 demonstrated infarcted areas mainly in the right hippocampus, medial occipital lobe, and thalamus. The patient underwent further examination using audiometry, speech testing, auditory evoked potentials, functional MRI, and cerebral PET. The initial diagnosis was extended nonverbal agnosia and total pure word deafness. The central auditory dysfunction improved over 6 months, with persisting hyperacusis, tinnitus, and amusia. Central auditory dysfunction is a rare complication after SAH. While cortical deafness may be associated with bilateral lesions of the temporal cortex, partly reversible central auditory dysfunction was observed in this patient after prominently unilateral right temporal lesions. The role of the interthalamic connections can be discussed, as well as the possibility that a less severe vasospasm on the left MCA could have transiently impaired the left thalamocortical auditory pathways.


1998 ◽  
Vol 10 (3) ◽  
pp. 303-315 ◽  
Author(s):  
C. J. Price ◽  
D. Howard ◽  
K. Patterson ◽  
E. A. Warburton ◽  
K. J. Friston ◽  
...  

Deep dyslexia is a striking reading disorder that results from left-hemisphere brain damage and is characterized by semantic errors in reading single words aloud (e.g., reading spirit as whisky). Two types of explanation for this syndrome have been advanced. One is that deep dyslexia results from a residual left-hemisphere reading system that has lost the ability to pronounce a printed word without reference to meaning. The second is that deep dyslexia reflects right-hemisphere word processing. Although previous attempts to adjudicate between these hypotheses have been inconclusive, the controversy can now be addressed by mapping functional anatomy. In this study, we demonstrate that reading by two deep dyslexic patients (CJ and JG) involves normal or enhanced activity in spared left-hemisphere regions associated with naming (Broca's area and the left posterior inferior temporal cortex) and with the meanings of words (the left posterior temporo-parietal cortex and the left anterior temporal cortex). In the right-hemisphere homologues of these regions, there was inconsistent activation within the normal group and between the deep dyslexic patients. One (CJ) showed enhanced activity (relative to the normals) in the right anterior inferior temporal cortex, the other (JG) in the right Broca's area, and both in the right frontal operculum. Although these differential right-hemisphere activations may have influenced the reading behavior of the patients, their activation patterns primarily reflect semantic and phonological systems in spared regions of the left hemisphere. These results preclude an explanation of deep dyslexia in terms of purely right-hemisphere word processing.


2003 ◽  
Vol 15 (2) ◽  
pp. 157-172 ◽  
Author(s):  
M. A. Schoenfeld ◽  
M. Woldorff ◽  
E. Düzel ◽  
H. Scheich ◽  
H.-J. Heinze ◽  
...  

The neural mechanisms and role of attention in the processing of visual form defined by luminance or motion cues were studied using magnetoencephalography. Subjects viewed bilateral stimuli composed of moving random dots and were instructed to covertly attend to either left or right hemifield stimuli in order to detect designated target stimuli that required a response. To generate form-from-motion (FFMo) stimuli, a subset of the dots could begin to move coherently to create the appearance of a simple form (e.g., square). In other blocks, to generate form-from-luminance (FFLu) stimuli that served as a control, a gray stimulus was presented superimposed on the randomly moving dots. Neuromagnetic responses were observed to both the FFLu and FFMo stimuli and localized to multiple visual cortical stages of analysis. Early activity in low-level visual cortical areas (striate/early extrastriate) did not differ for FFLu versus FFMo stimuli, nor as a function of spatial attention. Longer latency responses elicited by the FFLu stimuli were localized to the ventral-lateral occipital cortex (LO) and the inferior temporal cortex (IT). The FFMo stimuli also generated activity in the LO and IT, but only after first eliciting activity in the lateral occipital cortical region corresponding to MT/V5, resulting in a 50–60 msec delay in activity. All of these late responses (MT/V5, LO, and IT) were significantly modulated by spatial attention, being greatly attenuated for ignored FFLu and FFMo stimuli. These findings argue that processing of form in IT that is defined by motion requires a serial processing of information, first in the motion analysis pathway from V1 to MT/V5 and thereafter via the form analysis stream in the ventral visual pathway to IT.


2017 ◽  
Author(s):  
Giulia Dormal ◽  
Maxime Pelland ◽  
Mohamed Rezk ◽  
Esther Yakobov ◽  
Franco Lepore ◽  
...  

AbstractSounds activate occipital regions in early blind individuals. How different sound categories map onto specific regions of the occipital cortex remains however debated. We used fMRI to characterize brain responses of early blind and sighted individuals to familiar object sounds, human voices and their respective low-level control sounds. Sighted participants were additionally tested when viewing pictures of faces, objects and phase-scrambled control pictures. In both early blind and sighted, a double dissociation was evidenced in bilateral auditory cortices between responses to voices and object sounds: voices elicited categorical responses in bilateral superior temporal sulci while object sounds elicited categorical responses along the lateral fissure bilaterally, including the primary auditory cortex and planum temporale. Outside of the auditory regions, object sounds additionally elicited categorical responses in left lateral and ventral occipito-temporal regions in both groups. These regions also showed response preference for images of objects in the sighted, thus suggesting a functional specialization in these regions that is independent of sensory input and visual experience. Between-group comparisons revealed that only in the blind group, categorical responses to object sounds extended more posteriorly into the occipital cortex. Functional connectivity analyses evidenced a selective increase in the functional coupling between these reorganized regions and regions of the ventral occipito-temporal cortex in the early blind. In contrast, vocal sounds did not elicit preferential responses in the occipital cortex in either group. Nevertheless, enhanced voice-selective connectivity between the left temporal voice area and the right fusiform gyrus were found in the blind. Altogether, these findings suggest that separate auditory categories are not equipotent in driving selective auditory recruitment of occipito-temporal regions in the absence of developmental vision, highlighting domain-region constraints on the expression of crossmodal plasticity.


2019 ◽  
Author(s):  
Brielle C Stark ◽  
Alexandra Basilakos ◽  
Gregory Hickok ◽  
Chris Rorden ◽  
Leonardo Bonilha ◽  
...  

AbstractWhile numerous studies have explored single-word naming, few have evaluated the behavioral and neural correlates of more naturalistic language, like connected speech, which we produce every day. Here, in a retrospective analysis of 120 participants at least six months following left hemisphere stroke, we evaluated the distribution of word errors (paraphasias) and associated brain damage during connected speech (picture description) and object naming. While paraphasias in connected speech and naming shared underlying neural substrates, analysis of the distribution of paraphasias suggested that lexical-semantic load is likely reduced during connected speech. Using voxelwise lesion-symptom mapping (VLSM), we demonstrated that verbal (real word: semantically related and unrelated) and sound (phonemic and neologistic) paraphasias during both connected speech and naming loaded onto the left hemisphere ventral and dorsal streams of language, respectively. Furthermore, for the first time using both connected speech and naming data, we localized semantically related paraphasias to more anterior left hemisphere temporal cortex and unrelated paraphasias to more posterior left temporal and temporoparietal cortex. The connected speech results, in particular, highlight a gradient of specificity as one translates visual recognition from left temporo-occipital cortex to posterior and subsequently anterior temporal cortex. The robustness of VLSM results for sound paraphasias derived during connected speech was notable, in that analyses performed on sound paraphasias from the connected speech task, and not the naming task, demonstrated significant results following removal of lesion volume variance and related apraxia of speech variance. Therefore, connected speech may be a particularly sensitive task on which to evaluate further lexical-phonological processing in the brain. The results presented here demonstrate the related, though different, distribution of paraphasias during connected speech, confirm that paraphasias arising in connected speech and single-word naming likely share neural origins, and endorse the need for continued evaluation of the neural substrates of connected speech processes.


2003 ◽  
Vol 15 (1) ◽  
pp. 10-19 ◽  
Author(s):  
John J. McDonald ◽  
Wolfgang A. Teder-Sälejärvi ◽  
Francesco Di Russo ◽  
Steven A. Hillyard

Orienting attention involuntarily to the location of a sudden sound improves perception of subsequent visual stimuli that appear nearby. The neural substrates of this cross-modal attention effect were investigated by recording event-related potentials to the visual stimuli using a dense electrode array and localizing their brain sources through inverse dipole modeling. A spatially nonpredictive auditory precue modulated visual-evoked neural activity first in the superior temporal cortex at 120–140 msec and then in the ventral occipital cortex of the fusiform gyrus 15–25 msec later. This spatio-temporal sequence of brain activity suggests that enhanced visual perception produced by the cross-modal orienting of spatial attention results from neural feedback from the multimodal superior temporal cortex to the visual cortex of the ventral processing stream.


2019 ◽  
Vol 5 (2) ◽  
pp. 106-116
Author(s):  
Lin Shi ◽  
Peipeng Liang ◽  
Andy Li ◽  
Raymond Wong ◽  
Yishan Luo ◽  
...  

Objective: Understanding how brain changes over lifetime provides the basis for new insights into neurophysiology and neuropathology. In this study, we carried out a pseudo-longitudinal study based on age-related Chinese brain atlases (i.e., Chinese2020) constructed from large-scale volumetric brain MRI data collected in normal Han Chinese adults at varying ages. Methods: In order to quantify the deformation and displacement of brains for each voxel as age increases, optical flow algorithm was employed to compute motion vectors between every two consecutive brain templates of the age-related brain atlas, i.e., Chinese2020. Results: Dynamic age-related neuroanatomical changes in a standardized brain space were shown. Overall, our results demonstrate that brain inward deformation (mainly due to atrophy) can appear in adulthood and this trend generally accelerates as age increases, affecting multiple regions including frontal cortex, temporal cortex, parietal cortex, and cerebellum, whereas occipital cortex is least affected by aging, and even showed some degree of outward deformation in the midlife. Conclusion: Our findings indicated more complicated age-related changes instead of a simple trend of brain volume decrease, which may be in line with the recently increasing interests in the age-related cortical complexity with other morphometry measures.


Sign in / Sign up

Export Citation Format

Share Document