scholarly journals Nutritional Quality Improvement Of Soybean Meal By Bacillus Velezensis And Lactobacillus Plantarum During Two-Stage Solid- State Fermentation

Author(s):  
Long Chen ◽  
Zijian Zhao ◽  
Wei Yu ◽  
Lin Zheng ◽  
Lijia Li ◽  
...  

Abstract Bacillus velezensis is widely used for agricultural biocontrol, due to its ability to enhance plant growth while suppressing the growth of microbial pathogens. However, there are few reports on its application in fermented feed. Here, a two-stage solid-state fermentation process using Bacillus velezensis followed by Lactobacillus plantarum was developed to degrade antinutritional factors (ANFs) and improve soybean meal (SBM) nutrition for animal feed. The process was evaluated for performance in degrading SBM antinutritional factors, dynamic changes in physicochemical characteristics, microorganisms and metabolites. After two-stage fermentation, degradation rates of glycinin and β-conglycinin contents reached 78.60% and 72.89%, respectively. The pH of fermented SBM (FSBM) decreased to 4.78±0.04 and lactic acid content reached 183.38±4.86 mmol/kg. NSP-degrading enzymes (Non-starch polysaccharide, NSPases) and protease were detected from the fermented product, which caused the changed microstructure of SBM. Compared to uninoculated SBM, FSBM exhibited increased proportions of crude protein (51.97±0.44% vs. 47.28±0.34%), Ca, total phosphorus (P), and trichloroacetic acid-soluble protein (11.79±0.13% vs. 5.07±0.06%). Additionally, cellulose and hemicellulose proportions declined by 22.10% and 39.15%, respectively. Total amino acid content increased by 5.05%,while the difference of AA content between the 24h, 48 h and 72 h of fermentation was not significant (P>0.05). Furthermore, FSBM also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. These results demonstrated that two-stage SBM fermentation process based on Bacillus velezensis 157 and Lactobacillus plantarum BLCC2-0015 is an effective approach to reduce ANFs content and improve the quality of SBM feed.

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Long Chen ◽  
Zijian Zhao ◽  
Wei Yu ◽  
Lin Zheng ◽  
Lijia Li ◽  
...  

AbstractBacillus velezensis is widely used for agricultural biocontrol, due to its ability to enhance plant growth while suppressing the growth of microbial pathogens. However, there are few reports on its application in fermented feed. Here, a two-stage solid-state fermentation process using Bacillus velezensis followed by Lactobacillus plantarum was developed to degrade antinutritional factors (ANFs) and improve soybean meal (SBM) nutrition for animal feed. The process was evaluated for performance in degrading SBM antinutritional factors, dynamic changes in physicochemical characteristics, microorganisms and metabolites. After two-stage fermentation, degradation rates of glycinin and β-conglycinin contents reached 78.60% and 72.89%, respectively. The pH of fermented SBM (FSBM) decreased to 4.78 ± 0.04 and lactic acid content reached 183.38 ± 4.86 mmol/kg. NSP-degrading enzymes (Non-starch polysaccharide, NSPases) and protease were detected from the fermented product, which caused the changed microstructure of SBM. Compared to uninoculated SBM, FSBM exhibited increased proportions of crude protein (51.97 ± 0.44% vs. 47.28 ± 0.34%), Ca, total phosphorus (P), and trichloroacetic acid-soluble protein (11.79 ± 0.13% vs. 5.07 ± 0.06%). Additionally, cellulose and hemicellulose proportions declined by 22.10% and 39.15%, respectively. Total amino acid content increased by 5.05%, while the difference of AA content between the 24 h, 48 h and 72 h of fermentation was not significant (P > 0.05). Furthermore, FSBM also showed antibacterial activity against Staphylococcus aureus and Escherichia coli. These results demonstrated that two-stage SBM fermentation process based on Bacillus velezensis 157 and Lactobacillus plantarum BLCC2-0015 is an effective approach to reduce ANFs content and improve the quality of SBM feed.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Cheng Wang ◽  
Changyou Shi ◽  
Weifa Su ◽  
Mingliang Jin ◽  
Bocheng Xu ◽  
...  

ABSTRACT Substantial annual economic loss in livestock production is caused by antinutritional factors in soybean meal and corn mixed substrates, which can be degraded by microbial fermentation. Although considerable efforts have been made to explain the effects of fermentation on soybean meal and corn-based feed, the dynamics of the physicochemical characteristics, microbiota, and metabolic functions of soybean meal and corn mixed substrates during solid-state fermentation remain unclear. Here, multiple physicochemical analyses combined with high-throughput sequencing were performed to reveal the dynamic changes that occur during a novel two-stage solid-state fermentation process. Generally, inoculated bacteria rapidly proliferated in the initial 12-h aerobic fermentation (P = 0.002). Notably, most nutritional changes occurred during 12 to 24 h compared to 0 to 12 h. Second-stage anaerobic fermentation increased the bacterial abundance and lactic acid content (P < 0.00). Bacillus spp., Enterococcus spp., and Pseudomonas spp. were predominantly involved in the maturation of the fermented mixed substrates (P < 0.05). Additionally, the available phosphorus exhibited the greatest interaction with the microbial community structure. Cellular processes and environmental information processing might be the main metabolic processes of the microbiota during this fermentation. An in vivo model further evaluated the growth-promoting effects of the fermented products. These results characterized the dynamic changes that occur during two-stage solid-state fermentation and provided potential references for additional interventions to further improve the effectiveness and efficiency of solid-state fermentation of feed. IMPORTANCE Solid-state fermentation (SSF) plays pivotal roles not only in human food but also farm animal diets. Soybean meal (SBM) and corn account for approximately 70% of the global feed consumption. However, the nutritional value of conventional SBM and corn mixed substrates (MS) is limited by antinutritional factors, causing substantial economic loss in livestock production. Although emerging studies have reported that SSF can improve the nutritional value of SBM-based substrates, the dynamic changes in the physicochemical features, microbiota, and metabolic functions of MS during SSF remain poorly understood, limiting further investigation. To provide insights into the dynamics of the physicochemical characteristics and the complex microbiome during the two-stage SSF of MS, multiple physicochemical analyses combined with high-throughput sequencing were applied here. These novel insights shed light on the complex changes that occur in the nutrition and microbiome during two-stage SSF of MS and are of great value for industrial feed-based practices and metabolomic research on SSF ecosystems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weifa Su ◽  
Zipeng Jiang ◽  
Lihong Hao ◽  
Wentao Li ◽  
Tao Gong ◽  
...  

Corn germ meal (CGM) and corn gluten feed (CGF) are the two main corn byproducts (CBs) obtained from corn starch extraction. Due to their high fiber content, low protein content, and severe imbalance of amino acid, CBs are unable to be fully utilized by animals. In this study, the effect of microorganism, proteases, temperature, solid–liquid ratio, and time on nutritional properties of CB mixture feed (CMF) was investigated with the single-factor method and the response surface method to improve the nutritional quality and utilization of CBs. Fermentation with Pichia kudriavzevii, Lactobacillus plantarum, and neutral protease notably improved the nutritional properties of CMF under the fermentation conditions of 37°C, solid–liquid ratio (1.2:1 g/ml), and 72 h. After two-stage solid-stage fermentation, the crude protein (CP) and trichloroacetic acid-soluble protein (TCA-SP) in fermented CMF (FCMF) were increased (p &lt; 0.05) by 14.28% and 25.53%, respectively. The in vitro digestibility of CP and total amino acids of FCMF were significantly improved to 78.53% and 74.94%, respectively. In addition, fermentation degraded fiber and provided more organic acids in the CMF. Multiple physicochemical analyses combined with high-throughput sequencing were performed to reveal the dynamic changes that occur during a two-stage solid-state fermentation process. Generally, Ascomycota became the predominant members of the community of the first-stage of fermentation, and after 36 h of anaerobic fermentation, Paenibacillus spp., Pantoea spp., and Lactobacillales were predominant. All of these processes increased the bacterial abundance and lactic acid content (p &lt; 0.00). Our results suggest that two-stage solid-state fermentation with Pichia kudriavzevii, Lactobacillus plantarum, and protease can efficiently improve protein quality and nutrient utilization of CMF.


Sign in / Sign up

Export Citation Format

Share Document