scholarly journals Self-organizing topology for energy-efficient ad-hoc communication networks of mobile devices

2020 ◽  
Author(s):  
Indushree Banerjee ◽  
Martijn Warnier ◽  
Frances M. T Brazier

Abstract When physical communication network infrastructures fail, infrastructure-less communication networks such as mobile ad-hoc networks (MANET), can provide an alternative. This, however, requires MANETs to be adaptable to dynamic contexts characterized by the changing density and mobility of devices and availability of energy sources. To address this challenge, this paper proposes a decentralized context-adaptive topology control protocol. The protocol consists of three algorithms and uses preferential attachment based on the energy availability of devices to form a loop-free scale-free adaptive topology for an ad-hoc communication network. The proposed protocol has a number of advantages. First, it is adaptive to the environment, hence applicable in scenarios where the number of participating mobile devices and their availability of energy resources is always changing. Second, it is energy-efficient through changes in the topology. This means it can be flexibly be combined with different routing protocols. Third, the protocol requires no changes on the hardware level. This means it can be implemented on all current phones, without any recalls or investments in hardware changes. The evaluation of the protocol in a simulated environment confirms the feasibility of creating and maintaining a self-adaptive ad-hoc communication network, consisting of multitudes of mobile devices for reliable communication in a dynamic context.

2020 ◽  
Author(s):  
Indushree Banerjee ◽  
Martijn Warnier ◽  
Frances M. T Brazier

Abstract When physical communication network infrastructures fail, infrastructure-less communication networks such as mobile ad-hoc networks (MANET), can provide an alternative. This, however, requires MANETs to be adaptable to dynamic contexts characterized by the changing density and mobility of devices and availability of energy sources. To address this challenge, this paper proposes a decentralized context-adaptive topology control protocol. The protocol consists of three algorithms and uses preferential attachment based on the energy availability of devices to form a loop-free scale-free adaptive topology for an ad-hoc communication network. The proposed protocol has a number of advantages. First, it is adaptive to the environment, hence applicable in scenarios where the number of participating mobile devices and their availability of energy resources is always changing. Second, it is energy-efficient through changes in the topology. This means it can be flexibly be combined with different routing protocols. Third, the protocol requires no changes on the hardware level. This means it can be implemented on all current phones, without any recalls or investments in hardware changes. The evaluation of the protocol in a simulated environment confirms the feasibility of creating and maintaining a self-adaptive ad-hoc communication network, consisting of multitudes of mobile devices for reliable communication in a dynamic context.


Mobile ad hoc network (MANET) attracted various researchers in the emerging communication networks without having any centralized structure. In this network, mobile nodes moves in their own wish creating a dynamic topology. Routing is a cumbersome task with this dynamic topology from time to time change in connection pattern. DYMO is emerged as challenging protocol in MANET but works on static configuration parameters such as Hello messages. The mobile device updates the connectivity of their neighbours by sending Hello messages at frequent intervals irrespective of the network scope (terrain) and network elements(number of nodes). As the mobile nodes are battery equipped devices, lot of energy is consumed with these messages. Energy efficient mechanisms are necessary in this type of networks. In this work, DYMOHBFLWTN mechanism is proposed to set the Hello parameter dynamically in DYMO considering network terrain and number of nodes utilizing fuzzy principles. Experiments are conducted on Qualnet 7.0 simulator to evaluate mechanisms - DYMOHBFLWTN and DYMO. The proposed DYMOHBFLWTN mechanism provides better results compared to existing DYMO.


2011 ◽  
Vol 34 (7) ◽  
pp. 1342-1350 ◽  
Author(s):  
Xiao-Hong LI ◽  
Da-Fang ZHANG ◽  
Wen-Bin CHEN ◽  
Dong WANG

2017 ◽  
Vol 2 (7) ◽  
pp. 5-8
Author(s):  
Neeraj Verma ◽  
Kuber Mohan

Energy is a critical issue in Mobile Ad-hoc Network. Nodes in Network are working in presence of limited or less energy due to dynamic nature of nodes or infrastructure less network. MANET has no infrastructure so nodes in MANET work on dynamic routing. In this way, energy proficient routing is required for reducing energy utilization. Energy proficient routing plans can extraordinarily reduce energy utilization and augments the lifetime of the networks. Scalability of Ad Hoc Networks can be enhanced by using land data, for example, in LAR, GPSR etc. They utilize physical area data; regularly from GPS (Global Positioning System).GPS empowers a gadget to decide their position as in longitude, Latitude and Altitude by getting this data from the satellites. There has been significant effort in proposing energy efficient routing protocols with the help of GAGAN (GPS Aided GEO Augmented Navigation) which have accuracy to approx One meter in India or its neighbor countries. GAGAN is a route framework which is helped by both GPS and nearby telemetry information to possibly give quicker and more exact situating and navigational information.


Sign in / Sign up

Export Citation Format

Share Document