scholarly journals Electromechanical Impedance Based Self-Diagnosis of Piezoelectric Smart Structure Using Principal Component Analysis and LibSVM

Author(s):  
Xie Jiang ◽  
Xin Zhang ◽  
Tao Tang ◽  
Yuxiang Zhang

Abstract The long-term use of a piezoelectric smart structure make it difficult to judge whether the structure or piezoelectric lead zirconate titanate (PZT) is damaged when the signal changes. If the sensor fault occurs, the cases and degrees of the fault are unknown based on the electromechanical impedance method. Therefore, after the principal component analysis (PCA) of six characteristic indexes, a two-component solution which could explain 99.2% of the variance in the original indexes was obtained to judge whether the damage comes from the PZT. Then LibSVM was used to make an effective identification of four sensor faults (pseudo soldering, debonding, wear, and breakage) and their three damage degrees. The result shows that the identification accuracy of damaged PZT reached 97.5%. The absolute scores of PCA comprehensive evaluation for structural damages are less than 0.5 while for sensor faults are greater than 0.6. By comparing the scores of the samples under unknown conditions with the set threshold, whether the sensor faults occur is effectively judged; the intact and 12 possible damage states of PZT can be all classified correctly with the model trained by LibSVM. It is feasible to use LibSVM to classify the cases and degrees of sensor faults.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xie Jiang ◽  
Xin Zhang ◽  
Tao Tang ◽  
Yuxiang Zhang

AbstractThe long-term use of a piezoelectric smart structure make it difficult to judge whether the structure or piezoelectric lead zirconate titanate (PZT) is damaged when the signal changes. If the sensor fault occurs, the cases and degrees of the fault are unknown based on the electromechanical impedance method. Therefore, after the principal component analysis (PCA) of six characteristic indexes, a two-component solution that could explain 99.2% of the variance in the original indexes was obtained to judge whether the damage comes from the PZT. Then LibSVM was used to make an effective identification of four sensor faults (pseudo soldering, debonding, wear, and breakage) and their three damage degrees. The result shows that the identification accuracy of damaged PZT reached 97.5%. The absolute scores of PCA comprehensive evaluation for structural damages are less than 0.5 while for sensor faults are greater than 0.6. By comparing the scores of the samples under unknown conditions with the set threshold, whether the sensor faults occur is effectively judged; the intact and 12 possible damage states of PZT can be all classified correctly with the model trained by LibSVM. It is feasible to use LibSVM to classify the cases and degrees of sensor faults.


2014 ◽  
Vol 578-579 ◽  
pp. 1020-1023
Author(s):  
Jing Zhou Lu ◽  
Jia Chen Wang ◽  
Xu Zhu

In this paper, we introduce a set of techniques for time series analysis based on principal component analysis (PCA). Firstly, the autoregressive (AR) model is established using acceleration response data, and the root mean squared error (RMSE) of AR model is calculated based on PCA. Then a new damage sensitive feature (DSF) based on the AR coefficients is presented. To test the efficacy of the damage detection and localization methodologies, the algorithm has been tested on the analytical and experimental results of a three-story frame structure model of the Los Alamos National Laboratory. The result of the damage detection indicates that the algorithm is able to identify and localize minor to severe damage as defined for the structure. It shows that the suggested method can lead to less amount of computing time, high suitability and identification accuracy.


Sign in / Sign up

Export Citation Format

Share Document