scholarly journals Generation of Dyskeratosis Congenita-like Hematopoietic Stem Cells through the Stable Inhibition of DKC1

2020 ◽  
Author(s):  
Carlos Carrascoso-Rubio ◽  
Hidde A. Zittersteijn ◽  
Laura Pintado-Berninches ◽  
Beatriz Fernández-Varas ◽  
M. Luz Lozano ◽  
...  

Abstract Dyskeratosis congenita is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for bone marrow failure in dyskeratosis congenita patients is allogeneic hematopoietic stem cell transplantation. However due to the toxicity associated to allogeneic hematopoietic stem cell transplantation in dyskeratosis congenita, new non-toxic therapies are recommended to improve the life expectancy of these patients. Since bone marrow biopsies are not routinely performed during the follow-up of dyskeratosis congenita patients, the availability of dyskeratosis congenita hematopoietic stem cells constitutes a major limitation in the development of new hematopoietic therapies for dyskeratosis congenita. Here we aimed at generating dyskeratosis congenita-like human hematopoietic stem cells in which the efficacy of new therapies could be investigated. X-linked dyskeratosis congenita is one of the most frequent variants of dyskeratosis congenita and is associated with an impaired expression of the DKC1 gene. In this study we thus generated dyskeratosis congenita-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells, using lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of dyskeratosis congenita-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of the bone marrow failure characteristic of dyskeratosis congenita patients, and will serve as a platform for the development of new hematopoietic therapies for dyskeratosis congenita patients.

2021 ◽  
Author(s):  
Carlos Carrascoso-Rubio ◽  
Hidde A. Zittersteijn ◽  
Laura Pintado-Berninches ◽  
Beatriz Fernández-Varas ◽  
M. Luz Lozano ◽  
...  

Abstract Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34 + cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1 -interfered CD34 + cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence and apoptosis. Moreover, DKC1 -interfered human CD34 + cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome, and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carlos Carrascoso-Rubio ◽  
Hidde A. Zittersteijn ◽  
Laura Pintado-Berninches ◽  
Beatriz Fernández-Varas ◽  
M. Luz Lozano ◽  
...  

AbstractDyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for the bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However, due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here, we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence, and apoptosis. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1589-1589 ◽  
Author(s):  
Masaki Iwasa ◽  
Yasuo Miura ◽  
Aya Fujishiro ◽  
Akihiro Tamura ◽  
Atsushi Sato ◽  
...  

Abstract Total-body irradiation is frequently used as a conditioning treatment for hematopoietic stem cell transplantation. Although previous studies have demonstrated that irradiation induces apoptosis and senescence in hematopoietic stem/progenitor cells (HSPCs), its effect on the functional characteristics of human bone marrow mesenchymal stromal/stem cells (BM-MSCs) is largely unknown. Human BM-MSCs were isolated from BM samples according to our previously published method (Stem Cells 32:2245, 2014). BM samples were purchased from AllCells (Emeryville, CA). For the irradiation experiments, BM-MSCs were g-irradiated (Cesium-137) with various doses ranged from 2 to 12 Gy by a Gammmacell Irradiator (Best Theratronics Ltd, Ontario, Canada). We first examined the expansion of g-irradiated human BM-MSCs. When BM-MSCs (0.5 x 105) were cultured on a 10-cm culture dish in advanced-minimal essential medium (Invitrogen, Carlsbad, CA) supplemented with 5% fetal bovine serum (FBS, Invitrogen), the cells expanded rapidly, reached near confluence within 2 weeks, and the average number of cells on day 7 was 6.4 x 105. On the other hand, the number of BM-MSCs that were g-irradiated at 2 Gy, 4 Gy and 12 Gy on day 7 was low at 0.8 x 105, 0.3 x 105, and 0.2 x 105, respectively. The recovery of cell expansion was irradiation dose-dependent; the average number of cells on day 28 was 8.6 x 105 (2 Gy), 3.7 x 105 (4 Gy) and 0.3 x 105 (12 Gy). Next, hematopoiesis-supportive capabilities of g-irradiated human BM-MSCs were examined. Human CD34 positive HSPCs were co-cultured with g-irradiated BM-MSCs in StemSpan Serum-Free Expansion Medium (STEMCELL Technologies, Vancouver, Canada) supplemented with stem cell factor (SCF), Flt3-ligand (Flt3-L), thrombopoietin (TPO), and interleukin (IL)-3. After 10-day co-culture, the expansion of HSPCs was comparable among BM-MSCs with or without g-irradiation. The number of CD33 positive myeloid progenitor cells in the expanded cells was also comparable among BM-MSCs with or without g-irradiation. However, when human CD34 positive HSPCs were co-cultured with g-irradiated BM-MSCs in the complete medium supplemented with 10 ng/mL SCF and 5 ng/mL FLt3-L for 4 weeks, the generation of CD19 positive cells was impaired. The number of CD19 positive cells, which were generated in co-cultures of CD34 positive HSPCs (0.2 x 104) with BM-MSCs that were not g-irradiated, was 1.4 x 104, whereas those in co-cultures with BM-MSCs that were g-irradiated at 2 Gy, 4 Gy and 12 Gy were 0.09 x 104, 0.04 x 104, 0.05 x 104, respectively. With respect to the expression of B-cell lymphopoiesis-associated humoral factors in BM-MSCs, mRNA expression levels of CXCL12/SDF-1, Flt3-L, SCF and IL-7 were decreased in g-irradiated BM-MSCs. Especially, the expression of Flt3-L in BM-MSCs was reduced soon after irradiation exposure. Finally, we found that the osteogenic, adipogenic and chondrogenic differentiation capability of the g-irradiated BM-MSCs were dysregulated, as assessed by both the expression of lineage-specific molecular markers. In conclusion, g-irradiation compromised expansion, differentiation and B-cell lymphopoiesis-supportive capabilities of human BM-MSCs in a dose-dependent manner. This study could provide new insights into the role of BM-MSCs in the pathogenesis of immunologic and non-immunologic complications after hematopoietic stem cell transplantation. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Carlos Carrascoso-Rubio ◽  
Hidde A. Zittersteijn ◽  
Laura Pintado-Berninches ◽  
Beatriz Fernández-Varas ◽  
M. Luz Lozano ◽  
...  

Abstract Dyskeratosis congenita (DC) is a rare telomere biology disorder, which results in different clinical manifestations, including severe bone marrow failure. To date, the only curative treatment for bone marrow failure in DC patients is allogeneic hematopoietic stem cell transplantation. However due to the toxicity associated to this treatment, improved therapies are recommended for DC patients. Here we aimed at generating DC-like human hematopoietic stem cells in which the efficacy of innovative therapies could be investigated. Because X-linked DC is the most frequent form of the disease and is associated with an impaired expression of DKC1, we have generated DC-like hematopoietic stem cells based on the stable knock-down of DKC1 in human CD34+ cells with lentiviral vectors encoding for DKC1 short hairpin RNAs. At a molecular level, DKC1-interfered CD34+ cells showed a decreased expression of TERC, as well as a diminished telomerase activity and increased DNA damage, cell senescence and apoptosis. Moreover, DKC1-interfered human CD34+ cells showed defective clonogenic ability and were incapable of repopulating the hematopoiesis of immunodeficient NSG mice. The development of DC-like hematopoietic stem cells will facilitate the understanding of the molecular and cellular basis of this inherited bone marrow failure syndrome, and will serve as a platform to evaluate the efficacy of new hematopoietic therapies for DC.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 26-26
Author(s):  
Yeon Jung Lim ◽  
Omri Avraham Arbiv ◽  
Melanie Evelyn Kalbfleisch ◽  
Mohammed Nuaimi ◽  
MacGregor Steele ◽  
...  

Background. Dyskeratosis congenita (DC) is a telomere biology disorder with a high risk of bone marrow failure, cancer, pulmonary and liver disease. Mutation in multiple telomere related genes including DKC1, TINF2, RTEL1, TERC, TERT, WRAP53, CTC1, NOP10, NHP2 and TPP1 have been reported. Patients with mutations in several DC genes (e.g. heterozygous TINF2, hemizygous DKC1 and biallelic RTEL1 mutations) typically tend to have a particularly serious disease with severe bone marrow failure (SBMF) at a young age, non-hematological manifestations and very short telomeres. Currently, allogeneic hematopoietic stem cell transplantation (HSCT) is the only available curative treatment for bone marrow failure and leukemia in DC patients. Relatively few case series of patients with DC undergoing HSCT have been reported, which generally suggested a poor outcome. The present study aimed to characterize the outcome of HSCT in a Canadian cohort of patients with DC and determine potential relationships between outcome and genotype. Methods. The Canadian Inherited Marrow Failure Registry (CIMFR) is a multicenter registry that includes tertiary centers that care for IBMFS patients across all Canadian provinces. Patients with DC who had been enrolled in CIMFR and underwent HSCT between January 2001 and December 2019 were included. Data were extracted from the CIMFR database. Results. Among 35 patients with DC enrolled in the CIMFR, 11 underwent HSCT. Seven patients were male. Median age at presentation, diagnosis and HSCT was 2.1 years (range: 0 to 9.13s), 5.5 years (range: 1.94 to 35.25), and 7.0 years (range; 0.5-37), respectively. The diagnosis of 3 patients was made after HSCT. Median follow up time from HSCT was 5.89 years (range; 0.2-14.0 years). Among transplanted patients, five had TINF2 mutations, two had RTEL1 mutations, and one patient had DKC1 mutation. Eight patients underwent HSCT for severe bone marrow failure, and three patients for single or multilneage cytopenia. All patients had normal bone marrow karyotype before HSCT. All patients had a full matched donor; two were related and nine were unrelated. Ten patients received reduced-intensity conditioning, and one received myeloablative conditioning. Two patients experienced engraftment failure and underwent a second HSCT. Five years and ten years overall survival after HSCT were 90.9% (95% CI 73.9-100%) and 80% (95% CI 27.2- 97.5%), respectively; however, complications and deaths started appearing thereafter, mainly in patients with TINF2 mutation. All five patients with TINF2 mutation died, and other patients were alive. The causes of death were: 1) pulmonary fibrosis (N=2), 2) gastrointestinal bleeding (N=2), and 3) EBV infection (N=1). Two patients were diagnosed with pulmonary fibrosis after 8 and 11 years from HSCT and died 13.7 and 14 years post-transplant. Two patients had gastrointestinal bleeding after 3.9 years and 4.8 years from HSCT and died 6.6 and 5.7 years post-transplant. Of the patients with GI bleeding, both had hepatic fibrosis and one had pulmonary fibrosis. Summary: In this series, most patients with DC had resolution of the bone marrow failure and relatively good quality of life in the first few years post HSCT. However, longer outcome in the patients with TINF2 mutation was dismal because of DC-related complications, especially pulmonary fibrosis and gastrointestinal bleeding. Effective therapies to prevent these complications are critically needed. Additional reports about HSCT outcome of patients with DC are necessary to characterize HSCT in patients with other genetic groups and to replicate the above results in TINF2 patients. Disclosures No relevant conflicts of interest to declare.


2016 ◽  
Vol 8 ◽  
pp. 2016054 ◽  
Author(s):  
Hosein Kamranzadeh fumani ◽  
Mohammad Zokaasadi ◽  
Amir Kasaeian ◽  
Kamran Alimoghaddam ◽  
Asadollah Mousavi ◽  
...  

Background & objectives: Fanconi anemia (FA) is a rare genetic disorder caused by an impaired DNA repair mechanism which leads to an increased tendency toward malignancies and progressive bone marrow failure. The only curative management available for hematologic abnormalities in FA patients is hematopoietic stem cell transplantation (HSCT). This study aimed to evaluate the role of HSCT in FA patients.Methods: Twenty FA patients with ages of 16 or more who underwent HSCT between 2002 and 2015 enrolled in this study. All transplants were allogeneic and the stem cell source was peripheral blood and all patients had a full HLA-matched donor.Results: Eleven patients were female and 9 male (55% and 45%). Mean age was 24.05 years. Mortality rate was 50% (n=10) and the main cause of death was GVHD. Survival analysis showed an overall 5-year survival of 53.63% and 13 year survival of 45.96 % among patients.Conclusion: HSCT is the only curative management for bone marrow failure in FA patients and despite high rate of mortality and morbidity it seems to be an appropriate treatment with an acceptable long term survival rate for adolescent and adult group.


2014 ◽  
Vol 97 (12) ◽  
pp. e75-e77 ◽  
Author(s):  
Mathieu Meunier ◽  
Anne-Claire Manez ◽  
Aliénor Xhaard ◽  
Régis Peffault de Latour ◽  
Flore Sicre de Fontbrune ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document